首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   9篇
  国内免费   17篇
综合类   3篇
无线电   11篇
一般工业技术   3篇
自动化技术   175篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   10篇
  2020年   6篇
  2019年   9篇
  2018年   9篇
  2017年   16篇
  2016年   22篇
  2015年   10篇
  2014年   15篇
  2013年   10篇
  2012年   10篇
  2011年   6篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   11篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1986年   2篇
排序方式: 共有192条查询结果,搜索用时 424 毫秒
1.
大数据系统和分析技术综述   总被引:15,自引:0,他引:15  
首先根据处理形式的不同,介绍了不同形式数据的特征和各自的典型应用场景以及相应的代表性处理系统,总结了大数据处理系统的三大发展趋势;随后,对系统支撑下的大数据分析技术和应用(包括深度学习、知识计算、社会计算与可视化等)进行了简要综述,总结了各种技术在大数据分析理解过程中的关键作用;最后梳理了大数据处理和分析面临的数据复杂性、计算复杂性和系统复杂性挑战,并逐一提出了可能的应对之策.  相似文献   
2.
社交网络中的消息流行度预测问题对于信息推荐和病毒式营销等应用具有重要意义。该文提出了一种基于传播模拟的消息流行度预测方法,首先使用最大熵模型学习并预测用户转发消息的概率,然后使用独立级联传播模型在真实的社会网络上模拟消息的传播过程,从而完成消息流行度的预测。该方法的优点在于更充分的利用了社会网络的结构和用户特征信息。该文在Twitter数据集上的实验结果表明,相对于基准方法,该文提出的方法具有更高的准确率和稳定性。  相似文献   
3.
Link prediction in microblogs by using unsupervised methods has been studied extensively in recent years, which aims to find an appropriate similarity measure between users in the network. However, the...  相似文献   
4.
该文研究属性依赖情感知识学习。首先提出了一个新颖的话题模型,属性观点联合模型(Joint Aspect/Opinion model, JAO),来同时抽取评论实体属性及属性相关观点词信息。在此基础上,对于各个属性,构造属性依赖的词关系图,并在该图上应用马尔科夫随机行走过程来计算观点词到少量褒、贬种子词的游走时间(Hitting Time),进而估计这些词的属性依赖的情感极性分值。在餐馆点评数据上的实验表明所提出的方法能有效抽取属性相关观点词,同时有效估计其属性依赖的情感极性分值。  相似文献   
5.
媒体舆论引导仿真   总被引:1,自引:0,他引:1  
使用multi-Agent的建模思想,以现实为基础建立了一个舆论涌现的仿真模型.该模型主要由个体和媒体以及它们之间的规则组成.个体的属性包括了个体之间的信任度、个体观点的可信度和个体的从众性;媒体的属性包括媒体的影响范围和权威度.规则包括个体交互规则和个体与媒体的交互规则.通过仿真证明了模型是合理的,并且用该模型来仿真媒体对舆论演化的引导作用,从媒体的数量和报道频率2个方面研究媒体在舆论形成过程中的引导作用,结果发现积极媒体的数量越多对舆论的引导作用越强,媒体的报道频率增加会对舆论的形成产生积极效果,但是超过一定次数时对舆论的影响作用有限.最后通过对模拟结果的分析,提出了通过媒体来引导舆论的方式.  相似文献   
6.
在信息传播中,用户在重复接收同一信息的情况下其转发行为会具有一定的倾向性。对这种转发的倾向性建模是影响力分析、传播动力学、社会推荐等一系列信息传播相关应用研究领域中的一个关键问题。本文假设用户的转发选择行为主要由用户间的人际影响力决定。人际影响力的大小由信息传播者的影响力和信息接收者的易感性共同作用。本文从真实的信息传播记录中推断出用户隐式的影响力和易感性,进而提出了一种转发选择模型。该模型能够有效解决目前方法存在的对转发选择行为建模不充分和模型泛化能力差的问题。本文选取典型的转发选择建模方法作为比较,将所提的转发选择模型在新浪微博数据上进行对比验证。实验表明,本文所提的模型在两种评价指标上均取得更好效果,证明了所提模型的有效性。  相似文献   
7.
该文提出了一种新颖的概率交易模型PTM,针对线下百货进行个性化的推荐。传统的推荐模型,如K-近邻算法、矩阵分解等,或者仅利用局部的数据,使得模型面临线下数据极大的稀疏性挑战,或者忽略百货数据中的交易维度,使得模型损失了同一交易中多商品共现的强相关信息,最终导致它们在面对线下百货推荐问题时性能低下。针对以上的问题,本模型从交易的维度出发,建模交易记录中的共现模式,并利用全局的交易数据来学习商品的相关分量,在此基础上推断出用户的兴趣分布,实现个性化的推荐。在真实的线下百货交易数据上的实验结果表明,该模型能够极大地提高线下百货领域个性化推荐的准确性。
  相似文献   
8.
近年来,深度学习越来越广泛地应用于自然语言处理领域,人们提出了诸如循环神经网络(RNN)等模型来构建文本表达并解决文本分类等任务。长短时记忆(long short term memory,LSTM)是一种具有特别神经元结构的RNN。LSTM的输入是句子的单词序列,模型对单词序列进行扫描并最终得到整个句子的表达。然而,常用的做法是只把LSTM在扫描完整个句子时得到的表达输入到分类器中,而忽略了扫描过程中生成的中间表达。这种做法不能高效地提取一些局部的文本特征,而这些特征往往对决定文档的类别非常重要。为了解决这个问题,该文提出局部化双向LSTM模型,包括MaxBiLSTM和ConvBiLSTM。MaxBiLSTM直接对双向LSTM的中间表达进行max pooling。ConvBiLSTM对双向LSTM的中间表达先卷积再进行max pooling。在两个公开的文本分类数据集上进行了实验。结果表明,局部化双向LSTM尤其是ConvBiLSTM相对于LSTM有明显的效果提升,并取得了目前的最优结果。  相似文献   
9.
该文提出了一种基于情感词向量的情感分类方法。词向量采用连续实数域上的固定维数向量来表示词汇,能够表达词汇丰富的语义信息。词向量的学习方法,如word2vec,能从大规模语料中通过上下文信息挖掘出潜藏的词语间语义关联。本文在从语料中学习得到的蕴含语义信息的词向量基础上,对其进行情感调整,得到同时考虑语义和情感倾向的词向量。对于一篇输入文本,基于情感词向量建立文本的特征表示,采用机器学习的方法对文本进行情感分类。该方法与基于词、N-gram及原始word2vec词向量构建文本表示的方法相比,情感分类准确率更高、性能和稳定性更好。  相似文献   
10.
传统的信息检索的研究多集中在文档级的检索场景中,然而,句子级的检索在如移动应用以及信息需求更加明确的检索场景下具有非常重要的意义。在句子级的检索场景下,我们认为句子的上下文能够提供更加丰富的语义信息来支撑句子与查询的匹配,基于此,该文提出了一个基于句子上下文的深度语义句子检索模型(context-aware deep sentence matching model, CDSMM)。具体的,我们使用双向循环神经网络来建模句子内部以及句子上下文的语义信息,基于句子和查询的语义信息得到它们的匹配程度,在WebAP句子检索数据集上的实验表明,我们的模型性能显著地优于其他的方法,并取得了目前最好的效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号