首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   1篇
石油天然气   5篇
  2021年   1篇
  2014年   2篇
  2011年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 216 毫秒
1
1.
针对大港油田疏松砂岩区块含水上升快、出砂加剧,常规防砂工艺技术无法解决既防砂又能有效降水的问题,研制出了一种自身可固结的颗粒型降水防砂复合材料(粒径0.3~0.5,0.5~0.7和0.7~1.4 mm)。采用正交试验进行了材料配方优选,并对优选出的材料进行了固化温度和固化时间对人工岩心固结强度和渗流能力的影响评价、耐酸碱介质性能评价和岩心稳定性评价。结果表明:该系列降水防砂复合材料适用于井温30~80 ℃的油井,人工岩心抗压强度大于3 MPa,液相渗透率0.3~0.8 μm2(根据粒径可以调节)。该降水防砂复合材料在大港油田成功实施了16井次,防砂施工成功率100%,防砂有效率93.8%,平均降水率达14.7%,取得了较好的降水防砂效果。   相似文献   
2.
有关疏松砂岩油藏水平井塑性破坏半径的研究没有考虑高温交变应力对近井岩石塑性破坏过程的影响.分析热采复杂条件下的水平井近井地层应力分布规律,提出基于不同岩石破坏准则的近井塑性破坏半径预测方法.结果表明,井壁处的塑性屈服函数值越大,井壁破坏程度越大,出砂越严重,塑性屈服函数的零点即为塑性破坏半径.井底温度越高,塑性破坏半径越大.塑性破坏半径受原地主应力顺序、井周角、方位角、井底流压等因素影响.当垂向主应力大于水平主应力时,垂直方向上的塑性破坏半径最大;反之,水平方向上的塑性破坏半径最大.当水平井方位角为0°(或180°)时,井周塑性破坏半径最大;当水平井方位角为90°(或270°)时,井周塑性破坏半径最小.该研究成果对于热采水平井出砂预测有一定的指导意义.  相似文献   
3.
针对浅层低温(低于50 ℃)防砂井化学材料难以固结、影响防砂效果的问题,研制了一种不需要外固化剂,就具有低温快速固化且高强度特点的多涂层包胶防砂支撑剂。从树脂胶结体系选择、固化体系选择、外包胶材料及包胶工艺选择、颗粒配方等方面进行了多涂层预包防砂支撑剂配方的研究。研制的防砂支撑剂分为A剂和B剂,其中A剂为树脂胶结支撑剂,B剂为树脂固化支撑剂。对该支撑剂进行了性能评价,包括固化温度和固化时间对人工岩心固结强度和渗流能力的影响评价、耐酸碱介质性能评价、岩心稳定性及其他性能评价。性能测试发现,A剂和B剂按质量比1∶1充分混合,在25 ℃下固化4 h后抗压强度能达到6 MPa以上,液相渗透率大于1 μm2。该防砂支撑剂在大港油田现场应用4口井,结果表明,该防砂支撑剂能够解决低温出砂井、生产大压差井、注水井和侧钻井的防砂难题,且防砂效果良好。   相似文献   
4.
针对页岩油水平井采用常规滑溜水压裂时存在用液量大、砂比低、增产效果不理想等问题,通过优选聚合物降阻剂,优化黏土稳定剂、破乳助排剂和过硫酸盐类破胶剂的加量,形成了调节聚合物降阻剂加量即可调控滑溜水压裂液黏度的变黏滑溜水压裂液体系。通过支撑剂导流能力模拟试验,优选了70/140目石英砂和40/70目陶粒的支撑剂组合,经先导性试验,形成了大港油田陆相页岩油滑溜水连续加砂压裂技术。该技术在G页2H井进行了现场试验,有效提高了施工效率和单位液体的携砂量,减少了压裂液用量,形成了较好的缝网体系,提高了储层改造程度,取得了良好的压裂增产效果。现场试验表明,该技术能够满足页岩油水平井滑溜水连续加砂压裂要求,可以为页岩油高效开发提供技术支撑。   相似文献   
5.
降水防砂材料充填防砂能改善井底流动条件,起到降水增油稳砂的作用,但其施工效果综合评价模型方面的研究尚为空白。通过降水防砂材料油水相对渗透率性能评价实验,探讨了降水防砂充填材料的基本渗流性能及其主要的作用机理,建立了降水防砂材料充填简化模型,推导了降水防砂材料充填降水效果及增产效果预测的计算模型。应用软件对预测模型的敏感性进行模拟计算,并通过实例计算验证了降水防砂充填工艺措施的降水效果和增产效果。研究成果对疏松砂岩高含水油田降水增油措施的制定有一定参考意义。  相似文献   
6.
大港油田疏松砂岩油藏具有埋藏浅,压实程度低,胶结疏松,易出砂,油层温度低等特点。针对这些情况,通过室内实验开发研制出一种CS-1防砂固结颗粒,并对其进行性能指标及影响因素评价实验。试验表明,CS-1防砂固结颗粒具有低温固化,固结时间短,固结强度高的特点。该工艺特殊的防砂机理和工艺特点解决了大港油田高含水井,低温井的防砂难题,取得了明显的防砂效果和显著的经济效益。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号