首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   5篇
综合类   1篇
建筑科学   3篇
一般工业技术   8篇
  2024年   2篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2018年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
针对大跨屋盖结构表面风压宽频谱特性与极值风压估计方法问题。提出一种基于带宽修正的高斯转化法求解非高斯风压峰值因子,结合大跨屋盖结构风洞试验,采用该方法和现有极值风压评估方法对大跨屋盖结构表面极值风压开展了系统的对比验证研究。结果表明:高斯峰值因子法估算的大跨屋盖结构表面风压峰值因子明显偏离了非高斯风压的峰值因子;忽略带宽参数的Hermite矩模型高估了非高斯风压的峰值因子;相对于修正带宽的Hermite矩模型和目标概率法,提出的修正带宽高斯转化法与Sadek-Simiu法估计的大跨屋盖结构风压峰值因子更为准确,与试验观测值整体上最接近,且提出的修正带宽高斯转化法得到的结果误差及离散性均较小,能够高效合理地提供大跨屋盖结构表面非高斯风压峰值因子。  相似文献   
2.
该文基于相关现场实测和风洞试验结果,对强台风下带挑檐低矮双坡房屋气动荷载特性进行了大涡模拟(Large-eddy simulation, LES)研究。研究了台风脉动风场人工合成方法、近壁区网格划分策略及壁面边界条件等模拟参数对带挑檐双坡低矮房屋风荷载特性影响,定量分析利用大涡模拟预测强台风下低矮房屋屋面风压特性的可靠性,并基于大涡模拟全流场信息分析了低矮房屋周边钝体绕流瞬态特征。研究结果表明:基于CDRFG(Consistent discretizing random flow generation) 人工合成湍流方法可以准确模拟具有高湍流度特性的台风风场,并通过先验的网格划分策略可以实现来流湍流自保持性。大涡模拟能够得到与现场实测及风洞试验较一致的平均和脉动风压系数,且极值风压系数在30%误差范围的可靠度达85%以上。迎风挑檐会导致屋面前缘流动分离提前发生,但对迎风前缘屋面风压分布规律影响较小。挑檐下缘形成的分离泡产生较大脉动吸力,挑檐局部净风压系数未显著增大。该文有助于进一步提升强台风下低矮房屋风荷载模拟的有效性,更加深入的掌握低矮房屋的风致破坏机理,为低矮房屋的抗风设计及抗风性能优化提供重要参考。  相似文献   
3.
对德州理工大学(Texas tech university,TTU)低矮房屋标准模型,以已有现场实测以及缩尺模型风洞实验数据为验证对比,基于大涡模拟(Large-eddy simulation,LES)方法研究了大气边界层湍流强度对低矮房屋风荷载特征的影响机理。采用CDRFG (Consistent discretizing random flow generation) 人工合成湍流方法生成大气边界层湍流,研究了来流湍流度对低矮建筑表面的平均、脉动以及极小值风压分布以及风压非高斯特性的影响,并利用LES能提供非常场流动全流域信息的优势,结合瞬态湍流场结构对大气边界层湍流对低矮房屋风荷载特征的影响机理进行了阐释。结果表明:LES数值模拟得到的平均、脉动及极小值风压系数与实验以及实测结果一致,平均风压结果包络在实测误差范围以内,极小值风压系数最大误差小于10%,脉动风压系数最大误差小于20%且误差区域较小。在来流湍流度增大的过程中,低矮房屋屋面平均风压系数变化较小,脉动风压系数呈显著的线性增加;极小值风压系数变化规律相对复杂,呈现出非线性减小的趋势,风压系数极小值可达?5.0;屋面涡脱强度逐渐被抑制,锥形涡迹线与屋面迎风前缘的夹角由14.4°下降至8.7°。屋面风压非高斯特性主要与屋面形成的涡旋结构相关,表现出典型的右偏软化非高斯过程,且随着来流湍流度的增加风压非高斯特性逐渐减弱。从流场的角度来看,湍流度的增加抑制屋面迎风前缘柱状涡以及锥形涡的形成,加快流动分离的再附,减少分离泡尺度,同时提高了屋盖周围的湍流高频能量成分,从而使脉动风压增加,极小值风压减小以及风压非高斯特性减弱。该研究阐明了大气边界层湍流对低矮房屋风荷载特性的影响机理,有助于进一步理解低矮房屋风致破坏机理,并且为低矮房屋的抗风设计及抗风性能优化提供重要参考。  相似文献   
4.
生成满足大气边界层风场特性的入口湍流是开展结构风效应大涡模拟的关键问题之一。该文的主要目的是验证并探讨两类主要的大气边界层大涡模拟入口湍流生成方法的合理性与可行性。采用CDRFG(Consistent Discretizing Random Flow Generation)方法和被动模拟法生成大气边界层风场,从统计特性、流场结构和计算效率等方面进行对比分析,比较不同网格系统下的数值模拟结果,提出结构风效应大涡模拟的网格划分策略。结果表明:相比于CDRFG方法,被动模拟法生成的流场结构更加合理,但无法预先考虑脉动风场的空间相关性,且需要较高的计算成本和先验的流场信息。计算域的网格分辨率对于统计特性和流场结构的模拟精度具有重要影响,而目标区域的网格分辨率应依据控制工程结构风致响应的主要频带范围确定。  相似文献   
5.
该文提出了一种用于海上风机的新型钢格构式浮式基础,研究了台风作用下新型钢格构式浮式基础的动力载荷和动力响应。根据美国可再生能源实验室的5 MW风电机组参数初步设计了一种新型的钢格构式浮式基础;采用Holland台风模型和超强台风“山竹”(1822)的实测数据,基于叶素动量理论、势流理论和Morison方程分析了台风-浪荷载联合作用下的浮式基础动力响应特性。结果表明:该文提出的钢格构式浮式基础的动力载荷和运动响应会受到台风作用的显著影响,强台风及台风过境工况下的响应显著大于稳态强风工况,并呈现出剧烈的非平稳性。浮式基础动力载荷和运动响应与环境风速变化的趋势一致,且当风向不断变化,将引起塔筒底部产生较大的扭矩,海上风机浮式基础产生较大的艏摇运动响应。证明了考虑台风作用对钢格构式浮式风机基础稳定性影响的必要性,为钢格构式浮式基础海上风机在台风作用下的安全评价提供了理论依据和分析方法。  相似文献   
6.
随着计算资源的飞速发展以及数值模拟技术的不断进步,大涡模拟被越来越多地应用于结构风工程领域的研究。运用大涡模拟准确模拟结构风效应的关键问题之一是生成满足大气边界层风场特性的入口湍流条件。预前模拟法和人工合成法是目前主流的两类大涡模拟入口湍流生成方法。该文阐述了不同入口湍流生成方法的基本原理,并梳理其在结构风工程领域的发展。从结构风工程研究的角度出发,对比分析不同方法的特点及适用性。最后,针对当前大气边界层大涡模拟入口湍流生成方法存在的问题,提出了未来研究的展望。  相似文献   
7.
闫渤文  马晨燕  赵乐  杨庆山 《工程力学》2021,41(11):66-78, 133
该文基于相关现场实测和风洞试验结果,对强台风下带挑檐低矮双坡房屋气动荷载特性进行了大涡模拟(Large-eddy simulation, LES)研究。研究了台风脉动风场人工合成方法、近壁区网格划分策略及壁面边界条件等模拟参数对带挑檐双坡低矮房屋风荷载特性影响,定量分析利用大涡模拟预测强台风下低矮房屋屋面风压特性的可靠性,并基于大涡模拟全流场信息分析了低矮房屋周边钝体绕流瞬态特征。研究结果表明:基于CDRFG(Consistent discretizing random flow generation) 人工合成湍流方法可以准确模拟具有高湍流度特性的台风风场,并通过先验的网格划分策略可以实现来流湍流自保持性。大涡模拟能够得到与现场实测及风洞试验较一致的平均和脉动风压系数,且极值风压系数在30%误差范围的可靠度达85%以上。迎风挑檐会导致屋面前缘流动分离提前发生,但对迎风前缘屋面风压分布规律影响较小。挑檐下缘形成的分离泡产生较大脉动吸力,挑檐局部净风压系数未显著增大。该文有助于进一步提升强台风下低矮房屋风荷载模拟的有效性,更加深入的掌握低矮房屋的风致破坏机理,为低矮房屋的抗风设计及抗风性能优化提供重要参考。  相似文献   
8.
结合半潜式和单立柱式海上风机浮式基础的特点,提出了一种用于海上风机的新型钢格构式基础.首先,根据美国可再生能源实验室(National Renewable Energy Laboratory,NREL)提供的5 MW海上风机样机对提出的新型浮式基础进行了结构设计.然后,采用水动力-空气动力-控制系统-系泊系统耦合方法对...  相似文献   
9.
根据目前土木工程专业课实验教学现状,从重视程度、硬件条件、组织管理和考核方式四个方面分析存在的问题,提出以解决实际工程项目问题为主线的实验教学方法,采用“学生为中心,小组为单位”的教学模式,优化成绩评定标准,引导学生建立系统的知识体系,激发学生积极参与实验探索的兴趣和动力。以风荷载实验教学为例,讨论了教学改革方案的实施情况。从课后反馈可以看出,该教学方法培养了学生分析解决问题和团队协作能力,并明显提升了学生的科研创新能力,教学效果较为显著。  相似文献   
10.
以Askervein山为研究对象,基于开源平台Nek5000,自编程序完成复杂地形下谱元法的网格建模,添加计算湍流粘性项子程序,对复杂地形风场进行大涡模拟,并与场地实测数据及其它数值结果进行对比。结果表明,谱元法的大涡模拟结果与Askervein山的场地实测结果符合较好,表明该方法在复杂地形风场的预测上有较高的精度,可用于复杂地形的风能资源评估。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号