首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
综合类   1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The experimental measurement of supercritical pressure carbon dioxide(sCO_2) heat transfer in vertical downward flow was performed in a circular tube with inner diameter of 10 mm. Then, a three-dimensional numerical investigation of sCO_2 heat transfer in upward and downward flows was performed in a vertical heated circular tube. The influence of heat flux, mass flux,and operating pressure on heat transfer under different flow directions were discussed. According to the "pseudo-phase transition" viewpoint to supercritical fluids, the analogy to the subcritical inverted-annular film boiling model, the physical model to sCO_2 heat transfer was established, where fluid region at the cross-section of circular tube was divided into gas-like region covering heated wall and core liquid-like phase region. Then, the thermal resistance mechanism which comprehensively reflected the effect of multiple factors including the thickness of the gas-like film or liquid-like region, fluid properties and turbulence on heat diffusion was proposed. Surprisingly, thermal resistance variation in upward flow is well identical with that of wall temperature and heat transfer deterioration is predicted successfully. In addition, compared with thermal resistance in the core liquid-like region, gas-like film formation is determined to be the primary factor affecting heat transfer behavior. Results also show that total thermal resistance in upward flow is always larger than that in downward flow. The investigation can provide valuable guide to design and optimize sCO_2 heaters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号