Lightning-generated whistler (LGW) waves which induce energetic electron precipitation provide an important coupling between the ionosphere and radiation belts. Using the ray-tracing technique, we examine the propagation behaviour of LGW waves and show that they can travel upward into the radiation belts during higher geomagnetic activities due to the plasmapause inward compression, particularly in cases of lower wave frequencies, lower wave normal angles and azimuthal angles. Both perpendicular and parallel group velocities of LGW waves remain in relatively small values inside the plasmasphere but change rapidly to high values outside the plasmasphere. The launching latitude increases with increasing LGW wave normal angle. These results here further reveal a detailed picture on how LGW waves escape out of the plasmasphere and onto the radiation belts. 相似文献
The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation.The numerical results show that the chorus waves at different regions play signiffcantly different roles.The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles.The nightside chorus waves can yield significant energization at larger pitch angles,but cannot efficiently resonate with the energetic electrons at lower pitch angle.Due to the numerical difficulty in fully solving Fokker-Planck equation,the cross diffusion terms are often ignored in the previous work.Here the effect of cross diffiusion at different regions is further analyzed.On the dayside,ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles,and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism.On the nightside,ignoring cross diffusion overestimates the electron phase space density(PSD) by about one order of magnitude at larger pitch angles.These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside,which should be included in the future radiation belt models. 相似文献
Science China Technological Sciences - Previous studies have shown that EMIC waves occur preferentially in the afternoon sector of the magnetosphere. Here we report obliquely propagating H+ and He+... 相似文献
Brazilian green propolis is known as an appreciable natural antioxidant with abundant polyphenolic compounds. For quality control, a fingerprint‐efficacy study of Brazilian green propolis was carried out in this work. Chemical fingerprints of Brazilian green propolis from 22 different sources were determined by HPLC and investigated by similarity analysis. The fingerprint‐efficacy relationships between chemical fingerprint and DPPH radical‐scavenging activity were established. The results showed that 14 characteristic common peaks were identified, and 9 compounds were discovered with free radical‐scavenging activities. Caffeoylquinic acids and artepillin C might be the major effective components for quality control of Brazilian green propolis due to their specificity and strong antioxidant activity. This study provides new markers for the quality assessment of Brazilian green propolis and its derived products. 相似文献
Previous theoretical studies have shown that dayside chorus can produce butterfly distribution of energetic electrons in the Earth’s radiation belts by preferentially accelerating medium pitch angle electrons, but this requires the further confirmation from high-resolution satellite observation. Here, we report correlated Van Allen Probes data on wave and particle during the 11–13 April, 2014 geomagnetic storm. We find that a butterfly pitch angle distribution of relativistic electrons is formed around the location L = 4.52, corresponding to the presence of enhanced dayside chorus. Using a Gaussian distribution fit to the observed chorus spectra, we calculate the bounce-averaged diffusion rates and solve two-dimensional Fokker-Planck equation. Numerical results demonstrate that acceleration by dayside chorus can yield the electron flux evolution both in the energy and butterfly pitch angle distribution comparable to the observation, providing a further evidence for the formation of butterfly distribution of relativistic electrons driven by very low frequency (VLF) plasma waves. 相似文献
Electromagnetic ion cyclotron (EMIC) emission is an efficient mechanism for scattering loss of energetic protons. Here, we report an event that provides both in-situ observation of energetic proton differential fluxes in the inner magnetosphere and precipitation of protons at ionospheric altitudes. During the 7–8 September 2015 geomagnetic storm the Van Allen Probes observed strong EMIC waves around L = 5 and a distinct decrement in fluxes of tens of keV protons around pitch angles 0°–45°. Meanwhile, precipitating protons at ionospheric altitudes were found to significantly enhanced (by several orders of magnitude), measured by NOAA 18 and 19 when they magnetically linked to the Van Allen Probe-A. By solving the Fokker-Planck diffusion equation, we show that EMIC waves can efficiently produce loss of energetic protons within about 2 h in the pitch angle range of ∼ 0°–45°, comparable to the satellite observations.
We study the field-aligned propagating magnetospheric chorus wave instability using a fully relativistic wave growth formula,the previously developed relativistic Kappa-type(KT) distribution and the regular Kappa distribution of energetic electrons.We demonstrate that the peak growth rate using the nonrelativistic Kappa simulation is higher than that using either the relativistic KT or the Kappa simulation at/above 100 keV, because the significant relativistic effect yields a reduction in the relativistic anisotropy. The relativistic anisotropy Arel basically decreases as the thermal parameter θ2 increases, allowing the peak growth by relativistic KT or Kappa distribution to stay at the lower frequency region. The growth rates tend to increase with the loss-cone parameter l because the overall anisotropy increases. Moreover, at high energy ~1.0 MeV, both the growth rate and the upper cutoff frequency become smaller as l increases for the relativistic KT calculation because the significant relativistic effect reduces both the resonant anisotropy and the number of the hot electrons, which is in contrast to the relativistic and nonrelativistic Kappa distribution calculations because the less relativistic or non-relativistic effect enhances the resonant anisotropy as l increases. The above results can be applied to the whistler-mode wave instability in the outer radiation belts of the Earth, the Jovian inner magnetosphere and other astrophysical plasmas where relativistic electrons often exist. 相似文献