首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
电工技术   1篇
综合类   2篇
化学工业   4篇
一般工业技术   2篇
自动化技术   1篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2015年   1篇
  2011年   2篇
  2005年   1篇
  1993年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
In this paper, we investigate control strategies for a scalar, one-step delay system in discrete-time, i.e., the state of the system is the input delayed by one time unit. In contrast with classical approaches, here the control action must be a memoryless function of the output of the plant, which comprises the current state corrupted by measurement noise. We adopt a first order state-space representation for the delay system, where the initial state is a Gaussian random variable. In addition, we assume that the measurement noise is drawn from a white and Gaussian process with zero mean and constant variance. Performance evaluation is carried out via a finite-time quadratic cost that combines the second moment of the control signal, and the second moment of the difference between the initial state and the state at the final time. We show that if the time-horizon is one or two then the optimal control is a linear function of the plant’s output, while for a sufficiently large horizon a control taking on only two values will outperform the optimal affine solution. This paper complements the well-known counterexample by Hans Witsenhausen, which showed that the solution to a linear, quadratic and Gaussian optimal control paradigm might be nonlinear. Witsenhausen’s counterexample considered an optimization horizon with two time-steps (two stage control). In contrast with Witsenhausen’s work, the solution to our counterexample is linear for one and two stages but it becomes nonlinear as the number of stages is increased. The fact that our paradigm leads to nonlinear solutions, in the multi-stage case, could not be predicted from prior results. In contrast to prior work, the validity of our counterexample is based on analytical proof methods. Our proof technique rests on a simple nonlinear strategy that is useful in its own right, since it outperforms any affine solution.  相似文献   
2.
The biodegradation of poly(vinyl alcohol) and poly(vinyl alcohol)‐graft‐lactic acid copolymers was analyzed, using Trichotecium roseum fungus. The samples were examined during biodegradation at different periods of exposure. Structural modifications of the biodegraded samples were investigated by Fourier transform infrared‐attenuated total reflectance spectroscopy, and the surface morphology was investigated by scanning electron microscopy. The static light scattering results concluded that the weight average molecular mass (Mw) of the copolymers increased after biodegradation, because the fractions with low molecular weight of the copolymers were destroyed. The thermal behavior and stability of the samples before and after the biodegradation period were investigated by differential scanning calorimetry (DSC) and thermogravimetric analyses. The thermogravimetric analyses and their derivatives (TG‐DTG) showed that the thermal stability of the biodegraded samples was more raised comparatively to the unbiodegraded ones. The DSC results demonstrated that biodegradation took place in the amorphous domains of the investigated polymer samples and the crystallinity degree increased after 24 biodegradation days. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41777.  相似文献   
3.
The present work aims to present the results based on the processing of nanocomposites, which consist of matrix materials like epoxy and filler materials such as conjugated nanomaterials/allotropes of carbon, namely, carbon black, graphite, and multiwalled carbon nanotube (MWCNT) used for targeted applications. To improve the physical and chemical properties and to facilitate a better interfacial interface between the polymer and nanotube, functional MWCNT is used during the preparation of the composite. The prime objective of the study is to establish the thermal, mechanical, and electrical properties of nanocomposites using experimental methods. It has been observed from the experimental results that carbon nanotube (CNT) based composite exhibits higher mechanical (tensile and hardness) and thermal properties as compared with the others. The electrical properties are found to be better in a graphite-based composite. Although CNT has superior mechanical and thermal properties, the exorbitant price limits its use. Hence, the allotropes of carbon may be used judiciously considering both the cost and property requirements of the targeted application. The work also studies the dispersion state of nanofibers through scanning electron microscopy (SEM).  相似文献   
4.
Poly(vinyl alcohol) (PVA), a well‐known synthetic biodegradable, biocompatible, and hydrophilic polymer is susceptible to several structural modifications, due to the presence of hydroxyl groups in its backbone. PVA was grafted with L (+)‐lactic acid (LA) in molar ratios VA/LA (1/1, 1.5/1, and 2.2/1), manganese acetate as catalyst, by solution polycondensation procedure, resulting the poly(vinyl alcohol)‐g‐lactic acid copolymers. Aqueous solutions of copolymers with glycerol as plasticizer, silver nanoparticles (Ago), and sodium tetraborate as crosslinking agent were used for films casting. The copolymers were characterized by FTIR and 1H RMN spectroscopy, gel permeation chromatography, thermal analyses (DTG and DSC), silver particles size, while films were characterized by mechanical properties and mechanodynamic analyses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
5.
In the current study, the calcium copper titanate (CCTO)/epoxy, barium titanate (BT)/epoxy and CCTO-BT/epoxy composite samples with variable volume fractions of CCTO and BT are fabricated using hand lay-up and compression moulding process. The composite samples are characterized for the frequency dependence on dielectric properties, conductivity, impedance spectroscopy and electrical modulus. X-ray diffraction (XRD) representation of CCTO-BT/epoxy composite samples confirmed the presence of both CCTO and BT ceramic samples separately. The dielectric characteristics of hybrid CCTO-BT/epoxy composite samples with CCTO∶BT ratio of 40∶60, 60∶40, and 50∶50 was found relatively better than those of single ceramic filler reinforced epoxy composites. AC conductivity analysis shows improvement in the results of hybrid filler-filled CCTO-BT/epoxy composites in comparison with single filler-filled epoxy composite. 50∶50 CCTO-BT/epoxy composite shows the best AC conductivity value of ~2.2×10-5 ohm-1·m-1 at a higher frequency of 1 MHz. The impedance analysis confirms the higher insulating properties for hybrid 40∶60 and 60∶40 CCTO-BT/epoxy composites with respect to the single and other hybrid ceramic epoxy composites. The analysis suggests the hybrid CCTO-BT/epoxy composites to be adopted as a potential dielectric material for energy storage devices and other electronic applications.  相似文献   
6.
Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst   总被引:1,自引:0,他引:1  
This article presents preparation, characterization and evaluation of an efficient heterogeneous Fe(III)-HY catalyst for photo-assisted Fenton reaction. Fe(III) ions are immobilized on HY zeolite using different loadings by impregnation, calcination and the activity of the catalyst is evaluated by the degradation of phenol. To initiate a photo-Fenton reaction, suspended Fe(III)-HY in solution is irradiated using UV light to form Fe(II)-HY necessary for the reaction to go. The effect of Fe loadings, H2O2 concentration, pH and quenching on photo-Fenton reaction are studied. The results obtained clearly show that 0.25 wt.% Fe(III)-HY is efficient in the degradation of phenol at pH = 6. Further the efficiency of Fe(III)-HY is compared with that of a homogeneous photo-Fenton reaction and the increased rate of reaction on Fe(III)-HY highlights the synergistic role of zeolite. Heterogeneous Fe(III)-HY in photo-Fenton reaction allows a wide range of pH for reaction against the narrow pH range in homogeneous system. The system is further subjected to evaluate its stability in solid state. Firstly the reaction solution containing Fe(III)-HY catalyst on irradiation is analyzed for Fe ions with atomic absorption spectroscopy (AAS) and also by calorimetry using 1,10-phenanthroline (o-phen) to find out any Fe leaching from the catalyst and the results show insignificant leaching of Fe (<0.3 ppm) at maximum loading of Fe under experimental conditions. Secondly, the irradiated Fe(III)-HY is complexed with o-phen and it is subjected to Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS) and electron spectroscopy for chemical analysis (ESCA) studies to detect and confirm the oxidation state of Fe in solid state. Critical analysis of these studies clearly show that Fe(III)-HY on irradiation changed to Fe(II)-HY and it is intact with the surface during the course of the reaction. The DRS spectra further evidences complexation of Fe(II) with o-phen. The stability of the catalyst is established by recycling studies.  相似文献   
7.
This study aims to provide guidelines to design and perform a robust and reliable physical-chemical characterization of liposome-based nanomaterials, and to support method development with a specific focus on their inflammation-inducing potential. Out of eight differently functionalized liposomes selected as “case-studies”, three passed the physical-chemical characterization (in terms of size-distribution, homogeneity and stability) and the screening for bacterial contamination (sterility and apyrogenicity). Although all three were non-cytotoxic when tested in vitro, they showed a different capacity to activate human blood cells. HSPC/CHOL-coated liposomes elicited the production of several inflammation-related cytokines, while DPPC/CHOL- or DSPC/CHOL-functionalized liposomes did not. This work underlines the need for accurate characterization at multiple levels and the use of reliable in vitro methods, in order to obtain a realistic assessment of liposome-induced human inflammatory response, as a fundamental requirement of nanosafety regulations.  相似文献   
8.
Lignin/epoxy composites   总被引:5,自引:0,他引:5  
This paper presents some possibilities for the use of lignin/epoxy resins in blends and composites with epoxy resins. A compatibility study was carried out by optical and electron microscopy, viscosimetric determinations and thermo-optical analysis in order to establish optimum synthesis conditions of molding mass (cast resins). Lignin/epoxy composites including various fillers (lead soap, alum earth, talc, chalk, sand, trihydrate aluminium oxide, glass fibers), plasticizer (dibutylphthalate and polyester C6) and pigments (iron-oxide and titanium dioxide) have been obtained. Lignin/epoxy composites are characterized by good dielectric, mechanical and adhesive properties. These composite materials can be used in the electronics industry.  相似文献   
9.
Microbe-related, especially viral-related pandemics have currently paralyzed the world and such pathogenesis is expected to rise in the upcoming years. Although tremendous efforts are being made to develop antiviral drugs, very limited progress has been made in this direction. The nanotheranostic approach can be a highly potential rescue to combat this pandemic. Nanoparticles (NPs) due to their high specificity and biofunctionalization ability could be utilized efficiently for prophylaxis, diagnosis and treatment against microbial infections. In this context, titanium oxide, silver, gold NPs, etc. have already been utilized against deadly viruses like influenza, Ebola, HIV, and HBV. The discovery of sophisticated nanovaccines is under investigation and of prime importance to induce reproducible and strong immune responses against difficult pathogens. This review focuses on highlighting the role of various nano-domain materials such as metallic NPs, magnetic NPs, and quantum dots in the biomedical applications to combat the deadly microbial infections. Further, it also discusses the nanovaccines those are already available for various microbial diseases or are in clinical trials. Finally, it gives a perspective on the various nanotechnologies presently employed for efficient diagnosis and therapy against disease causing microbial infections, and how advancement in this field can benefit the health sector remarkably.  相似文献   
10.
Real time monitoring and control of a modern power system has achieved significant development since the incorporation of the phasor measurement unit (PMU). Due to the time-synchronized capabilities, PMU has increased the situational awareness (SA) in a wide area measurement system (WAMS). Operator SA depends on the data pertaining to the real-time health of the grid. This is measured by PMUs and is accessible for data analytics at the data monitoring station referred to as the phasor data concentrator (PDC). Availability of the communication system and communication delay are two of the decisive factors governing the operator SA. This paper presents a pragmatic metric to assess the operator SA and ensure optimal locations for the placement of PMUs, PDC, and the underlying communication infrastructure to increase the efficacy of operator SA. The uses of digital elevation model (DEM) data of the surface topography to determine the optimal locations for the placement of the PMU, and the microwave technology for communicating synchrophasor data is another important contribution carried out in this paper. The practical power grid system of Bihar in India is considered as a case study, and extensive simulation results and analysis are presented for validating the proposed methodology.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号