首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Hu  RenXiang  Shan  Xu  Yuan  GuangYuan  Wang  ShuWen  Zhang  WeiHang  Qi  Wei  Cao  Zhe  Li  YiRen  Chen  ManMing  Yang  XiaoPing  Wang  Bo  Shao  SiPei  Li  Feng  Zhong  XiaoQing  Fan  Dan  Hao  XinJun  Feng  ChangQing  Su  ZhenPeng  Shen  ChengLong  Li  Xin  Dai  GuYue  Qiu  BingLin  Pan  ZongHao  Liu  Kai  Xu  ChunKai  Liu  ShuBin  An  Qi  Zhang  TieLong  Wang  YuMing 《中国科学:技术科学(英文版)》2019,62(6):1015-1027
A low-energy ion spectrometer(LEIS) for use aboard three-axis stabilized spacecraft has been developed to measure ion energy per charge distribution in three-dimensional space with good energy-, angular-and temporal-resolutions. For the standard top-hat electrostatic analyzer used widely in space plasma detection, three-axis stabilized spacecraft makes it difficult to obtain complete coverage of all possible ion arrival directions. We have designed angular scanning deflectors supplementing to a cylindrically symmetric top-hat electrostatic analyzer to provide a half-space field of view as 360°×90°(–45°–+45°), and fabricated the LEIS flight model for detecting magnetospheric ions in geosynchronous orbit. The performance of this payload has been evaluated in detail by a series of simulation and environmental tests, and the payload has also been calibrated through laboratory experiments using a low-energy ion source. The results show that capabilities of the LEIS payload are in accordance with the requirements of a magnetospheric mission.  相似文献   
2.
The energetic electron measurement is one of the most important issues to understand dynamics in space physics and the applications for space weather. In this study, the principle and functional components of the imaging energetic electron spectrometer(IES) onboard a Chinese navigation satellite in the inclined GEO orbit(IGSO) was introduced. The IES instrument is developed by the team in Peking University(BeiDa), thus it is named as BD-IES. Based on the pin-hole technique, the instrument can measure 50–600 keV electrons incident from 9 directions over a range of 180° in polar angle. With pulse height analysis(PHA), the spectrum can be determined for each direction. The energy and angular calibrations were performed, which show the good energy and angular characteristics of BD-IES. Monte Carlo simulations show that the anti-proton design of BDIES can effectively decrease the proton contamination on the electron measurements in the inclined GEO orbit. The primary results of BD-IES verify the successful design of this instrument.  相似文献   
3.
The single event effect(SEE) is an important consideration in electronic devices used in space environments because it can lead to spacecraft anomalies and failures. The linear energy transfer(LET) of ions is commonly investigated in studies of SEE. The use of a thin detector is an economical way of directly measuring the LET in space. An LET telescope consists of a thin detector as the front detector(D1), along with a back detector that indicates whether D1 was penetrated. The particle radiation effect monitor(PREM) introduced in this paper is designed to categorize the LET into four bins of 0.2–0.4, 0.4–1.0, 1.0–2.0 and 2.0–20 Me V·cm~2/mg, and one integral bin of LET20 Me V·cm~2/mg. After calibration with heavy ions and Geant4 analysis, the LET boundaries of the first four bins are determined to be 0.236, 0.479, 1.196, 2.254, and 17.551 Me V·cm~2/mg, whereas that of the integral bin is determined to be LET14.790 Me V·cm~2/mg. The acceptances are calculated by Geant4 analysis as 0.452, 0.451, 0.476, 0.446, and 1.334, respectively. The LET accuracy is shown to depend on the thickness of D1; as D1 is made thinner, the accuracy of the measured values increases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号