首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
  国内免费   1篇
化学工业   1篇
冶金工业   4篇
  2015年   1篇
  2014年   4篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
 建立了直吹管内气固流动、传热和煤粉燃烧的数学模型,基于实际高炉工艺参数,借助商业软件通过数值模拟的方法研究了直吹管内的气体成分和温度变化,并重点考察了煤粉粒径、鼓风含氧量和鼓风温度等操作参数对煤粉燃尽率的影响。研究结果表明:减小粒径、增加含氧量、提高鼓风温度都可以使煤粉在直吹管内的燃尽率得到提高。煤粉在直吹管内的燃烧行为以挥发分的脱除为主,该过程对温度敏感,而对氧气浓度不敏感。这一结论与前人在回旋区内得到的模拟结果相反。因此在研究变量对喷吹煤粉燃尽率的影响时,模拟区域应同时包含直吹管和回旋区。  相似文献   
2.
以氧气高炉循环煤气加热工艺为背景,在实验室条件下研究了CO和H2体积分数较高的煤气加热时的析碳行为。实验结果表明,温度和CO2体积分数是影响析碳反应的重要因素。在300-700℃范围内,当温度低于500℃时,析碳反应速度随温度的升高而增加;当高于此温度时,反应速度随温度的升高而下降。析碳反应包括CO分解析碳反应以及CO和H2的混合析碳反应。对比热力学理论与实验现象分析了析碳过程中以上两个反应可能起到的作用。采用扫描电镜,从微观结构上观察了500~700℃时加热过程中析出碳的形态并研究了析碳行为。另外,随着CO2体积分数的增加,析碳反应速率逐渐降低。在500℃和600℃时,CO2体积分数的增加对析碳行为有较大抑制作用,尤其在500℃时这种抑制作用更加明显。   相似文献   
3.
通过二维冷态物理模型对氧气高炉炉身喷吹煤气在炉内分布进行了实验研究,分别研究了炉身煤气总量、辅助风口直径以及炉身喷吹煤气量与炉身煤气总量之比对炉身喷吹煤气在炉内分布的影响.结果表明,炉身喷吹煤气量与炉身煤气总量之比对炉身喷吹煤气在炉身分布起决定性作用,而炉身煤气总量和辅助风口直径的影响较小.同时,在炉身煤气上升过程中涡流扩散效应的影响也较小.通过对根据实验数据绘制的炉身等浓度分布图进行研究发现,炉身煤气分布主要分为两个不同的区域,一个是炉身喷吹煤气主流区,另一个是从高炉下部产生的上升煤气主流区.在炉身等浓度分布图的基础上通过回归分析的方法推导出炉身喷吹水平喷吹煤气的渗透公式.此外,辅助风口被安装在炉身下部有利于铁矿石在炉身的间接还原.   相似文献   
4.
建立了直吹管-风口-回旋区下部区域内气固流动、传热和煤粉燃烧的数学模型,基于实际高炉工艺参数,借助商业软件通过数值模拟的方法研究了煤粉粒度、鼓风含氧量和鼓风温度对煤粉燃尽率的影响. 结果表明,煤粉粒径由120 mm降低到70 mm,燃尽率提高35.928%;鼓风含氧量由21%增加到30%,燃尽率上升16.542%;而鼓风温度由1423 K增加到1498 K,燃尽率仅提高8.897%. 脱挥发分过程和氧气供应是决定燃尽率高低的两大因素. 此外,在研究变量对喷吹煤粉燃尽率的影响时,模拟区域应同时包含直吹管、风口和回旋区.  相似文献   
5.
炉顶煤气循环-氧气鼓风高炉炼铁新技术的工艺特点决定了煤粉在其回旋区内的燃烧条件与传统高炉相比将发生很大变化.本文建立了氧气高炉直吹管—风口—回旋区下部煤粉流动和燃烧的数学模型,研究了入口布置方式、氧含量、循环煤气温度以及H2O和CO2含量对煤粉燃烧的影响.模拟结果表明:三种引入方式中,假想的循环煤气和氧气混合进入方式明显优于循环煤气和氧气单独进入方式.当氧的体积分数由80%增加到90%,相应的煤粉燃尽率由87.525%提高到93.402%.循环煤气温度对煤粉燃尽率的影响并不显著.循环煤气中H2O和CO2的体积分数提高5%,风口轴线上气体的最高温度分别降低124 K和113 K.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号