首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   7篇
一般工业技术   1篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2010年   2篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
超高分子量聚乙烯(UHMWPE)极高的分子量及线性分子链特性使其具备很多的优异性能,在军工、医药卫生等领域的应用越来越广泛的同时,对UHMWPE树脂的性能不断提出更高的要求。故利用高分辨扫描电镜(SEM)、高温凝胶色谱-红外联用(GPC-IR)、拉曼光谱(Raman)及差式扫描量热仪(DSC)对树脂初生态粒子的结晶结构、分子特性及热力学性能进行了研究,并通过控制模压过程中的冷却速率来研究UHMWPE样品的结晶行为,进而分析UHMWPE微观特性与宏观性能之间的关系。研究发现由次级颗粒和微纤组成的UHMWPE初生态粒子中具有大量的片晶和伸直链,分子链排列规整,结晶度高;但在熔融再结晶加工成制品的过程中,分子链的规整性遭到破坏,与初生态粒子相比,结晶度下降、缠结密度变大。另外,不同降温速率的样品中淬冷样品的分子链缠结密度最低,而低缠结、小的晶粒能够提升制品的耐冲击性能及断裂时的真应力。  相似文献   
2.
介绍了高分子材料热老化的研究现状,例举了几种工程材料的热老化机理研究及取得的一些成果,以及研究材料热老化的数理统计方法,展望了热老化研究的发展趋势。  相似文献   
3.
建立准确的超高分子量聚乙烯(PE-UHMW)定伸应力性能测试方法。该方法需在试样制备阶段添加质量分数为0.2%~0.8%的抗氧剂以减少分子链交联,使得定伸应力实验能够顺利开展。对相同特性的PE-UHMW,定伸应力随其分子量的增大而增大;分子量相同时,流动改性的PE-UHMW定伸应力小;相同分子量时,分子量分布窄的定伸应力大。定伸应力是表征PE-UHMW流动性的较好方法。  相似文献   
4.
超高分子量聚乙烯树脂原料经黏数测试筛选后模压成型,利用砂浆磨损考察其耐磨性能;并研究了石英砂类型、循环冷却水径流、及实验转速等试验条件对耐磨结果的影响。超高分子量聚乙烯试样磨损后的表面通过扫描电子显微镜(SEM)观察。结果表明:高硅含量的石英砂硬度大,能提高实验磨损效果;1 300r/min的转速能使试样达到理想的质量损失,并确保实验中电机功率的输出。超高分子量聚乙烯的缠结度随分子量的增高而递增,从而具有更佳的耐磨性。磨损过程中,并联的循环冷却水能降低试样表面的热降解和软化能,加速热能的转移并阻止润滑层的扩大,使材料的磨损效果更明显。  相似文献   
5.
利用程序控制压机对超高相对分子质量聚乙烯(PE-UHMW)树脂进行成型加工,并测试成型材料的简支梁冲击性能;针对加工工艺中的不同影响因素,通过单因素试验和方差分析考查各参数对PE-UHMW结晶性能的影响,得到了成型条件下分子链段运动、分子间自由体积以及分子间的相互作用与冲击性能的相关性;利用多因素均匀设计和逐步回归研究,确定温度为PE-UHMW树脂模压成型的最显著因素。  相似文献   
6.
通过溶液法共混复合制备超高分子量聚乙烯(UHMWPE)纳米复合材料,使用密度分析、拉伸性能研究、冲击性能试验、砂浆磨损指数等研究材料的刚性、韧性、磨损特性;通过摩擦因数实验模拟产品在实际应用中的磨损情况,筛选优质润滑剂;采用差示扫描量热法(DSC)研究了UHMWPE纳米复合材料在不同预处理后的结晶性能;使用扫描电子显微镜(SEM)观察UHMWPE纳米复合材料在低温脆断后的表界面形态。结果表明:和机械混合法相比,溶液法制备的UHMWPE纳米复合材料中的纳米包覆体系具有更好的分散性,相与相之间稳定结合,与超高基体产生更强的相互作用。  相似文献   
7.
采用改制的UHMWPE砂浆磨损试验机,通过正交试验,利用重复试验的方差分析对UHMWPE的砂浆磨损失效特性进行试验研究.结果显示:分子量是决定耐磨性的主要因素,并在电子显微镜(SEM)下对UHMWPE磨损表面形貌进行观察,显示了UHMWPE的砂浆磨损规律.  相似文献   
8.
研究自制的PP基增强母粒对UHMWPE/PP共混体系的增韧、增强作用,并通过力学性能测试及扫描电子显微镜研究其增韧、增强效果.结果表明,PP基玻璃纤维(GF)母粒对UHMWPE/PP共混体系的增韧、增强作用优于添加增容剂聚丙烯接枝马来酸酐(PP-g-MAH)、GF的简单混合方法,这是因为前者试样中GF与UHMWPE/PP共混体系界面粘结的牢固程度大于后者.UHMWPE/PP共混体系中加入PP基纳米CaCO3母粒能够同时起到增强和增韧的作用.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号