首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
电工技术   1篇
化学工业   5篇
无线电   1篇
一般工业技术   1篇
  2018年   3篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
采用单因素法对活性炭吸附电镀废水中COD的工艺条件进行了研究,考察了pH、活性炭用量、反应时间、反应温度对去除率的影响。结果表明,当pH为7.5、吸附时间为60 min、活性炭用量为6.0 g/L、温度为25℃时,COD去除率达到37.66%,出水COD 66.08 mg/L。  相似文献   
2.
研究了粉状活性炭对废水中Cu~(2+)、Ni~(2+)的吸附行为,考察了吸附剂投加量、pH、吸附时间等因素对活性炭吸附Cu~(2+)、Ni~(2+)的影响。试验结果表明:溶液pH和粉状活性炭投加量是影响金属离子吸附的重要因素,两种重金属的去除率均随活性炭投加量的增大而增加;当在pH值为7.5、吸附时间为60min、活性炭用量为6.0g/L、温度为25℃的最佳吸附条件下,Cu~(2+)、Ni~(2+)的去除率分别为86.60%和76.08%。  相似文献   
3.
以废旧锌锰电池为原料,采用草酸铵共沉淀法进行了锰锌铁氧体的制备研究。研究表明,制备锰锌铁氧体的适宜条件为:共沉淀温度50~60℃;pH为3.5~4;煅烧温度1080~1150℃;煅烧时间为4~6 h。借助于XRDI、R、SEM、TEM和VSM等手段对产物形貌、结构以及产物的磁性能进行了分析和表征,结果表明:所得产物的平均粒径约为28.5 nm,产物的饱和磁化强度为53.1924(emu/g),矫顽力为1280 A/m。  相似文献   
4.
对Fenton氧化处理电镀废水进行了研究,探讨了Fenton反应中的H_2O_2投加量、Fe~(2+)与H_2O_2的物质的量比、pH值以及反应时间对COD去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量为0.06mol/L、[Fe~(2+)]/[H_2O_2]为1∶3、pH值为3、反应时间40min、反应温度25℃。在此条件下,废水COD从原来2750mg/L降为441mg/L,COD去除率可达到83.95%。  相似文献   
5.
锰锌铁氧体是一种软磁性功能材料,在电子技术领域具有非常广泛的应用。本文较为系统地综述了近年来锰锌铁氧体材料性能改进方面的研究现状及进展情况。认为:新型添加剂的加入、生产工艺的改善与优化及新型煅烧设备的开发是提高锰锌铁氧体性能的关键所在。  相似文献   
6.
球磨与共沉淀法制备MnZn铁氧体的对比研究   总被引:2,自引:1,他引:1  
分别采用高能球磨和化学共沉淀法制备了MnZn铁氧体,通过XRD、VSM和金相显微镜的分析,对两种铁氧体的预烧料粉末、烧结体的显微结构以及磁性能做了比较。结果表明:化学共沉淀法所制备的预烧料粉末具有晶粒细小、均匀和活性高等优点;与高能球磨法相比,化学共沉淀法烧结磁体的密度较高、晶粒尺寸较大,磁性能更为优良。其相应的磁性能参数Ms、Mr、Hc和μi分别为3.845×102kA/m,3.421kA/m,0.722kA/m和5500。  相似文献   
7.
高能球磨法制备Mn-Zn铁氧体材料的研究   总被引:2,自引:0,他引:2  
以Fe2O3、Mn3O4和ZnO为原料,采用高能球磨法成功制备了Mn-Zn铁氧体,并利用XRD、SEM以及VSM等测试技术对样品进行了表征.研究了预烧温度对铁氧体相的形成过程以及烧结铁氧体材料的显微结构和磁性能的影响.结果表明,随着预烧温度的升高,预烧粉体的颗粒尺寸逐渐增大,起始磁导率和饱和磁化强度均呈现先增大后减小的趋势.适宜的预烧温度为850℃,高于或低于此温度,烧结铁氧体材料的显微结构和磁性能都会恶化.  相似文献   
8.
用单辊外圆液态急冷法制备了Fe89.5Zr2.7B6.5Ag0.3M1(M=Zr、Co、Ta、Ti、Cu、Nb)非晶铸带,然后进行不同方式的晶化处理制备纳米晶合金。研究了非晶纳米晶Fe89.5Zr3.7B6.5Ag0.3的显微组织、相组成与晶化过程。探讨了添加元素M(M=Co、Ta、Ti等)与制备工艺对非晶纳米晶Fe89.5Zr3.7B6.5Ag0.3合金显微组织、晶化过程与性能的影响。结果表明:第二种金属元素M的加入,有利于合金显微组织结构的纳米晶化,提高该合金的饱和磁感应强度Bs和电阻率,增大脆性和耐腐蚀性能;退火 水冷能极大提高Co基合金样品的Bs,并能降低材料的剩磁比;另外对非晶态合金来说,低温长时退火也有利于晶粒细化。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号