首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学工业   1篇
  2012年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
In this work, the feasibility of using a macroporous strong acid ion exchange resin (D72) as an adsorbent for praseodymium (Ⅲ) was examined. The adsorption behavior and mechanism were investigated with various chemical methods and IR spectrometry. The results showed that the loading of Pr (III) ions was strongly dependent on pH of the medium and the optimal adsorption condition is in HAc-NaAc medium with pH value of 3.0. Adsorption kinetics of Pr (III) ions onto D72 resin could be best described by pseudo-second-order model. The maximum adsorption capacity of D72 for Pr (Ⅲ) was evaluated to be 294 mg·g 1 for the Langmuir model at 298K. The apparent activation energy, E a , was 14.71 kJ·mol 1 . The calculated data of thermodynamic parameters, ΔSΘ value of 100 J·mol 1 ·K 1 and ΔHΘ value of 8.89 kJ·mol 1 , indicate the endothermic nature of the adsorption process, while a decrease of ΔGΘ with increasing temperature indicates the spontaneous nature of the adsorption process. Finally, Pr (Ⅲ) can be eluted by using 1.00 mol·L 1 HCl-0.50 mol·L 1 NaCl solution and the D72 resin can be regenerated and reused. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design. The characterization before and after adsorption of Pr (Ⅲ) ions on D72 resin was conformed by IR.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号