首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学工业   2篇
石油天然气   5篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 343 毫秒
1
1.
某公司加氢裂化装置生产的喷气燃料在冰点试验时发现了悬浮物,并且悬浮物在回温过程中消失。虽然通过调整原料中催化裂化柴油(简称催化柴油)、外购原料、常三线柴油的掺炼情况,减少原料中芳烃及正构烷烃的含量,但是在冰点试验时依然发现了悬浮物;其次,通过调整反应深度和分馏塔分离效果(喷气燃料馏程),以及对影响喷气燃料质量的其他因素进行排查,仍然未找到出现悬浮物的原因;最后通过化验分析方法排查发现,在干燥环境(没有湿空气的影响)下进行喷气燃料冰点试验时,可以避免产生絮状物,说明空气中的水是喷气燃料冰点试验中产生絮状物的直接原因。因此,在进行喷气燃料冰点试验时要采取措施隔绝水分。  相似文献   
2.
张斌  ;邓潇  ;黎臣麟 《当代化工》2014,(7):1191-1194
论述了将渣油加氢失活催化剂制备成加氢型和非加氢型新催化剂的工艺和方法,着重探讨了钒含量较高的失活催化剂加工为新型渣油加氢催化剂的方法和思路,并对渣油加氢过程中钒的作用机理进行归纳。  相似文献   
3.
为了提高重石脑油与喷气燃料收率,并将柴油组分切入尾油,进一步降低柴汽比,增产优质乙烯原料,中国石油四川石化有限责任公司对2. 70 Mt/a加氢裂化装置进行技术改造,采用中国石油化工股份有限公司石油化工科学研究院开发的多产化工原料和喷气燃料的加氢裂化技术并配套加氢精制剂RN-410、加氢裂化催化剂RHC-210与RHC-220组合,产品质量得到明显改善,重石脑油芳烃潜含量达到60%;喷气燃料烟点达到30. 5 mm,比上周期初期喷气燃料烟点高5 mm,喷气燃料收率达到35%,在当前转化率下就达到了设计值;尾油BMCI为11. 45,比上周期初期降低3个单位,因尾油中含有50%以上的柴油组分,降低了尾油立方平均沸点,导致尾油BMCI偏高,当前密度下,如果尾油10%点切到320℃,尾油BMCI可降到8. 3左右。  相似文献   
4.
为了降低减压渣油收率,提高减压蜡油收率,提高蜡油加氢裂化装置生产负荷的同时增产重石脑油与喷气燃料,采用了减压蜡油进行深拔工艺。生产结果表明:减压蜡油干点由540℃提高至580℃,原料油密度增大,催化剂失活速率增加,精制催化剂失活速率为设计值4.65倍,裂化催化剂失活速率为设计值5.8倍;减压渣油收率降低了6百分点,减压蜡油收率增加4百分点,混合柴油收率增加2百分点,喷气燃料烟点与柴油十六烷指数降低,但都能满足工艺和产品质量要求;提高减压蜡油的干点,增加了装置生产负荷,总体单位能耗下降了4.47 kg/t(即千克标油每吨),在一定程度上节约了能量,提高企业经济效益。  相似文献   
5.
为应对市场需求变化,中国石油四川石化有限责任公司于2018年采用中国石化石油化工科学研究院开发的多产重石脑油和喷气燃料加氢裂化技术对2.7 Mt/a加氢裂化装置进行了技术改造。装置开工满14个月的初期标定结果表明:在控制尾油收率为18.86%的情况下,装置的重石脑油收率为29.47%;喷气燃料收率为36.24%,较上周期提高11.48百分点,其性质符合3号喷气燃料指标要求;尾油的BMCI为7.8,是优质的蒸汽裂解制乙烯原料。采用该技术后装置实现了在压减柴油的同时增产重石脑油和喷气燃料、改善化工原料质量的目标。  相似文献   
6.
加氢裂化装置新氢中断会造成反应压力迅速下降,循环氢流量大幅度下降,而处理难点是避免反应器飞温和裂化剂中毒。通过对加氢裂化装置新氢中断不同处理方法分析可知,在高负荷高转化率工况下,新氢中断后,应第一时间启动0.7 MPa/min低速泄压,泄压时间超过5 min,且在5 min内精制平均反应温度降低3~5℃,裂化平均反应温度降低5~10℃,反应器各床层出口温度呈下降趋势,就可以关闭紧急泄压阀,该方法优点是操作简单,风险低。在低负荷低转化率工况下,新氢中断按原料中断处理,在5 min内精制平均反应温度降低3~5℃,裂化平均反应温度降低5~10℃,如果裂化反应器催化剂采用分级装填,应该首先大幅度降低裂化活性较高的催化剂床层与装填量最多的催化剂床层温度,且确保催化剂各床层出口温度呈下降趋势,该方法反应开工恢复时间短,但是操作难度较大,在切断原料后,反应温度在短时间内无法降低,就可能发生飞温风险。  相似文献   
7.
介绍了渣油加氢催化剂反应动力学的研究进展,列举了几类渣油加氢催化剂反应动力学模型。利用这些模型可以预测催化剂使用周期,帮助设计催化剂级配方案,并有助于对渣油加氢反应过程进行深入研究。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号