首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   12篇
化学工业   11篇
轻工业   47篇
无线电   2篇
一般工业技术   5篇
自动化技术   3篇
  2023年   4篇
  2022年   9篇
  2021年   15篇
  2020年   14篇
  2019年   10篇
  2018年   6篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
NiO nanostructure was synthesized using a simple co-precipitation method and was embedded on reduced graphene oxide surface via ultrasonication. Structural investigations were made through X-ray diffraction (XRD) and functional groups were confirmed by Fourier transform infrared spectroscopy (FTIR). XRD analysis revealed the grain size reduction with doping. Fourier transform infrared spectroscopy confirmed the presence of metal-oxygen bond in pristine and doped NiO nanostructure as well as the presence of carbon containing groups. Scanning electron microscopy (SEM) indicated that the particle size decreased when NiO nanostructure was doped with copper. BET surface area was found to increase almost up to 43 m2/g for Cu doped NiO nanostructure/rGO composite. Current-voltage measurements were performed using two probe method. UV–Visible spectroscopic profiles showed the blue and red shift for Cu doped NiO nanostructure and Cu doped NiO Nanostructure/rGO composite respectively. Rate constant for Cu doped NiO nanostructure/rGO composite found to increase 4.4 times than pristine NiO nanostructure.  相似文献   
2.
3.
One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness. The rapid and accurate identification mechanism for lard adulteration in meat products is highly necessary, for developing a mechanism trusted by consumers and that can be used to make a definitive diagnosis. Fourier Transform Infrared Spectroscopy (FTIR) is used in this work to identify lard adulteration in cow, lamb, and chicken samples. A simplified extraction method was implied to obtain the lipids from pure and adulterated meat. Adulterated samples were obtained by mixing lard with chicken, lamb, and beef with different concentrations (10%–50% v/v). Principal component analysis (PCA) and partial least square (PLS) were used to develop a calibration model at 800–3500 cm−1. Three-dimension PCA was successfully used by dividing the spectrum in three regions to classify lard meat adulteration in chicken, lamb, and beef samples. The corresponding FTIR peaks for the lard have been observed at 1159.6, 1743.4, 2853.1, and 2922.5 cm−1, which differentiate chicken, lamb, and beef samples. The wavenumbers offer the highest determination coefficient R2 value of 0.846 and lowest root mean square error of calibration (RMSEC) and root mean square error prediction (RMSEP) with an accuracy of 84.6%. Even the tiniest fat adulteration up to 10% can be reliably discovered using this methodology.  相似文献   
4.
5.
The main objective of this study was to investigate the combined effect of microwave (MW) treatment (2450 MHz for 120 s), ultrasonication (US) (24 KHz, 20 °C for 20 min) and combined treatment (MW-US) on the quality and stability of sugarcane juice (SCJ) during 21 days of storage at 4 °C. The effect of the treatments and storage time on physicochemical, bioactive compounds (total phenolic, flavonoids and ascorbic acid content) and microbial analysis of SCJ. No significant (< 0.05) changes were observed in °Brix, while there was an increase in pH and a decrease in titratable acidity in all treatments. Compared to US and MW, MW-US treatments was more effective in preserving colour attributes, total phenolic and flavonoids contents, ascorbic acid and antioxidant capacities of the SCJ during storage. The results regarding the microbial count indicate that more microbial safety and longer shelf life was achieved by MW-US. MW-US treatment is an effective technology for improving the safety and shelf life of SCJ by minimising quality changes, retaining bioactive compounds and reducing microbial growth during storage.  相似文献   
6.
7.
The efficiency of various techniques pulsed electric field (PEF), ultrasound (US), high‐pressure microfluidisation (HPMF), hydrochloric acid (HCl) and ionic liquids (ILs) for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis was compared. The results indicated that ILs, HCl and HPMF treatment were shown the most efficient for cell disruption with more than 80% astaxanthin recovery. While the cell wall integrity of H. pluvialis cyst cell was less affected by US and PEF treatment. It was found that imidazolium‐based ILs showed the greater potential for cell disruption than pyridinium‐based and ammonium‐based ILs. Among all the ILs examined, 1‐butyl‐3‐methylimidazolium chloride ([Bmim] Cl) exhibited efficient cell disruption and capability of astaxanthin recovery at mild condition (pretreatment with 40% IL aqueous solution at 40 °C, followed by extraction with methanol at 50 °C) without extensive energy consumption and special facility requirement. In addition, recyclability of ILs was excellent.  相似文献   
8.
Here, we have fabricated the spinel binary-metal oxide (FeCo2O4) via a solvent-free and cost-effective approach. The nanocomposites of the as-fabricated binary-metal spinel oxide have been prepared with three different conductive-matrices, namely r-GO, CNTs, and PANI, via ultra-sonication approach. The spinel phase and surface functionalities of the fabricated FeCo2O4 sample have been confirmed via XRD and FT-IR analyses, respectively. The morphological-structure and elemental composition of the fabricated samples have been probed via FESEM and EDX results. The role of added conductive-matrices in the improvement of the electrical conductivities of the fabricated nanocomposites has been investigated via I–V experiments. The electrochemical experiments, conducted in half-cell configuration, showed that FeCo2O4/PANI nanocomposite exhibited the highest specific capacitance (658.9 Fg-1) than that of the remaining two nanocomposites. Furthermore, FeCo2O4/PANI nanocomposite exhibited excellent cyclic stability as it lost just 8.3% of its initial specific capacitance even after 3000 cyclic tests. The superior capacitive-activity of the FeCo2O4/PANI nanocomposite is accredited to its high conductivity, large surface area, and synergy effects between the pseudocapacitance derived from the PANI and FeCo2O4 nanostructure. The electrochemical and electrical measurements suggested that FeCo2O4/PANI nanostructure is an emerging contender for energy storage applications.  相似文献   
9.
10.
In the present investigation, La1-xCoxCr1-yFeyO3 (x,y = 0.0, 0.12, 0.36, 0.60) perovskite was fabricated via a facile micro-emulsion route. The synthesized perovskites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques to examine the effect of Co and Fe ions on the physico-chemical properties. The ferroelectric, dielectric, and magnetic properties of La1-xCoxCr1-yFeyO3 were changed significantly as a function of dopants contents (Co and Fe ions). Outcomes revealed that the dielectric, ferroelectric and magnetic properties of LaCrO3 perovskite can be tuned significantly via Co and Fe doping and La0.40Co0.60Cr0.40Fe0.60O3 have potential for photocatalytic dye removal under (visible) light expoure. The photocatalytic activity (PCA) of the pristine LaCrO3 and La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst was evaluated under (visible) light irradiation for crystal violet (CV) dye. Experimental results revealed that La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst degrdae almost 77.21% CV dye with the rate constant value of 0.01475 min?1. In the presence of isopropyl alcohol (IPA) scavenger, the PCA of the La0.40Co0.60Cr0.40Fe0.60O3 photocatalyst and rate constant value of the photocatalytic reaction decreased to 32.5% and 0.00491 min?1, suggesting the superoxide as main active specie. Results revealed that Co and Fe doping doped material is efficient for photocatalytic presentations under solar light expoure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号