首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   3篇
  2019年   2篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A series of poly(acrylic acid-co-methylvinylketone–graft–sulfamethoxazole)(AVMDS) species was synthesized for drug carrier applications. The synthesis involved two steps: copolymerization of acrylic acid(AA) with methyl vinyl ketone(MVK) through the free radical route and subsequent grafting of the sulfamethoxazole (SMX) onto the copolymer via the Schiff base reaction of the primary amine of SMX with the carbonyl groups of the MVK units. The structures and properties of the materials were characterized by nuclear magnetic resonance(NMR), X-ray diffraction(XRD), differential scanning calorimetry(DSC), and scanning electronic microscopy (SEM). An in-vitro cytotoxicity test of the drug-carrier systems via MTT assay revealed no significant cytotoxic effect at concentrations up to 100?µg?·?ml?1. The dynamic release of SMX from these systems through a retro-imidation reaction (inverse Schiff base reaction) was investigated in depth, where the diffusion through the polymer matrix, the enhancement of the water solubility of SMX, the influence of the initial drug concentration, the pH of the medium, and the effect of the degree of swelling of the polymer matrix on the release dynamics were evaluated. The AVMGS4 and AVMGS1 drug carrier systems containing 3.58 and 1.18?wt% of SMX were the best performing systems.  相似文献   
2.
A series of poly(acrylic acid)/poly(methyl vinyl ketone) (PAA/PMVK) blends with different compositions were prepared by the solvent casting method. The miscibility of this pair of polymers was investigated by differential scanning calorimetry(DSC), Fourier transform infra-red (FTIR) and X-Ray diffraction (XRD) techniques. An in-vitro cytotoxicity test of the drug-carrier system via MTT (3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed no significant cytotoxic effects at concentrations up to 100 µg· ml?1. The STX/PAA-50 drug carrier systems were also prepared by solvent casting of solutions containing the sulfamethoxazole (STX) used as drug model and PAA/PMVK blend in N.N-dimethylformamide then crosslinked with acidified ethylene glycol. The release dynamic of STX from the prepared hydrogels was investigated in which the diffusion through the polymer matrix, the enhancement of the water solubility of STX, the influence of the initial drug concentration, the pH of the medium, and the effect of the degree of swelling of the polymer matrix on the release dynamic was evaluated. According to the total gastrointestinal transit time estimated by Belzer, the estimate distribution of STX released in the different organs indicated that the performance is obtained with the drug – carrier-system containing equal ratios of polymer and 10 wt% of STX (STX-10/PAA-50).  相似文献   
3.
Herein, various poly(ethylene-co-vinylalcohol)/poly(δ-valerolactone) blends were prepared at different ratios by solvent casting for use in tissue engineering. The miscibility of these polymers was studied in detail using differential scanning calorimetry, Fourier-transform infra-red spectroscopy, and X-ray diffraction. The Avrami model have been applied for determining the isothermal crystallization kinetics of poly(ethylene-co-vinyl alcohol), poly(δ-valerolactone) and their blend with equal compositions, in which the Avrami parameters, the maximum crystallization time and the half-time were deducted. Cell adhesion and cell proliferation of the resultant materials were examined by an (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)MTT assay; the blend containing equal amounts of the two polymers showed the best performance. Micropores and their connections were formed by using a new porogen under vacuum at temperatures slightly less than the glass transition temperature. The produced micropores and their interconnections were studied using scanning electron microscopy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号