首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
化学工业   5篇
无线电   1篇
一般工业技术   5篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2007年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
To effectively enhance the energy density and overall performance of electrochemical capacitors (ECs), a new strategy is demonstrated to increase both the intrinsic activity of the reaction sites and their density. Herein, nickel cobalt phosphides (NiCoP) with high activity and nickel cobalt hydroxides (NiCo‐OH) with good stability are purposely combined in a hierarchical cactus‐like structure. The hierarchical electrode integrates the advantages of 1D nanospines for effective charge transport, 2D nanoflakes for mechanical stability, and 3D carbon cloth substrate for flexibility. The NiCoP/NiCo‐OH 3D electrode delivers a high specific capacitance of ≈1100 F g?1, which is around seven times higher than that of bare NiCo‐OH. It also possesses ≈90% capacitance retention after 1000 charge–discharge cycles. An asymmetric supercapacitor composed of NiCoP/NiCo‐OH cathode and metal–organic framework‐derived porous carbon anode achieves a specific capacitance of ≈100 F g?1, high energy density of ≈34 Wh kg?1, and excellent cycling stability. The cactus‐like NiCoP/NiCo‐OH 3D electrode presents a great potential for ECs and is promising for other functional applications such as catalysts and batteries.  相似文献   
2.
Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).  相似文献   
3.
Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open‐framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid‐type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid‐types are proposed and discussed.  相似文献   
4.
Supercapacitors (SCs) have been widely studied as a class of promising energy‐storage systems for powering next‐generation E‐vehicles and wearable electronics. Fabricating hybrid‐types of electrode materials and designing smart nanoarchitectures are effective approaches to developing high‐performance SCs. Herein, first, a Ni‐Co selenide material (Ni,Co)Se2 with special cactus‐like structure as the core, to scaffold the NiCo‐layered double hydroxides (LDHs) shell, is designed and fabricated. The cactus‐like structural (Ni,Co)Se2 core, as a highly conductive and robust support, promotes the electron transport as well as hinders the agglomeration of LDHs. The synergistic contributions from the two types of active materials together with the superior properties of the cactus‐like nanostructure enable the (Ni,Co)Se2/NiCo‐LDH hybrid electrode to exhibit a high capacity of ≈170 mA h g?1 (≈1224 F g?1), good rate performance, and long durability. The as‐assembled (Ni,Co)Se2/NiCo‐LDH//PC (porous carbon) asymmetric supercapacitor (ASC) with an operating voltage of 1.65 V delivers a high energy density of 39 W h kg?1 at a power density of 1650 W kg?1. Therefore, the cactus‐like core/shell structure offers an effective pathway to engineer advanced electrodes. The assembled flexible ASC is demonstrated to effectively power electronic devices.  相似文献   
5.
Polyoxymethylene (POM) considered as the most appropriate alternative for ultra-high molecular weight polyethylene (UHMWPE) in the hip joint replacement application due to their biocompatibility, high mechanical properties, and cheapness. The wear is the main cause of the failure in the hip joint and the wear resistance of UHMWPE is still better than the wear resistance of POM. This research aims to improve the wear behavior of POM by blending it with 0.02?wt% of functionalized carbon nanotubes (CNTs) and using paraffin oil dispersion technique to obtain a uniform dispersion. The injection molding and machining process were used to produce the new (CNTs/POM) nanocomposite acetabular hip cup which has a high wear performance. The wear rate of the CNTs/POM cups was evaluated using a total leg joint’s simulator at 1,000?N for 3 million cycles under serum-based lubricated conditions. Moreover, the wear mechanism of cups was examined by scanning electron microscopy as well as the dispersion of CNTs inside the cup matrix. The results show that the wear resistance of POM cup has been improved by adding functionalized CNTs ~402% and ~221%, when compared with a virgin POM and UHMWPE, respectively, because of increasing the melting temperature and crystallinity degree.  相似文献   
6.
Metabolomics is a potential approach to paving new avenues for clinical diagnosis, molecular medicine, and therapeutic drug monitoring and development. The conventional metabolomics analysis pipeline depends on the data-independent acquisition (DIA) technique. Although powerful, it still suffers from stochastic, non-reproducible ion selection across samples. Despite the presence of different metabolomics workbenches, metabolite identification remains a tedious and time-consuming task. Consequently, sequential windowed acquisition of all theoretical MS (SWATH) acquisition has attracted much attention to overcome this limitation. This article aims to develop a novel SWATH platform for data analysis with a generation of an accurate mass spectral library for metabolite identification using SWATH acquisition. The workflow was validated using inclusion/exclusion compound lists. The false-positive identification was 3.4% from the non-endogenous drugs with 96.6% specificity. The workflow has proven to overcome background noise despite the complexity of the SWATH sample. From the Human Metabolome Database (HMDB), 1282 compounds were tested in various biological samples to demonstrate the feasibility of the workflow. The current study identified 377 compounds in positive and 303 in negative modes with 392 unique non-redundant metabolites. Finally, a free software tool, SASA, was developed to analyze SWATH-acquired samples using the proposed pipeline.  相似文献   
7.
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. It is well known that repeated inflammatory insults in the liver can cause hepatic cellular injury that lead to cirrhosis and, ultimately, hepatocellular carcinoma. Furthermore, the microbiome has been implicated in multiple inflammatory conditions which predispose patients to malignancy. With this in mind, we explore the inflammatory implications of the microbiome on pathways that lead to HCC. We also focus on how an understanding of these underlying inflammatory principles lead to a more wholistic understanding of this deadly disease, as well as potential therapeutic implications.  相似文献   
8.
Advanced functional materials with fascinating properties and extended structural design have greatly broadened their applications. Metamaterials, exhibiting unprecedented physical properties (mechanical, electromagnetic, acoustic, etc.), are considered frontiers of physics, material science, and engineering. With the emerging 3D printing technology, the manufacturing of metamaterials becomes much more convenient. Graphene, due to its superior properties such as large surface area, superior electrical/thermal conductivity, and outstanding mechanical properties, shows promising applications to add multi-functionality into existing metamaterials for various applications. In this review, the aim is to outline the latest developments and applications of 3D printed graphene-based metamaterials. The structure design of different types of metamaterials and the fabrication strategies for 3D printed graphene-based materials are first reviewed. Then the representative explorations of 3D printed graphene-based metamaterials and multi-functionality that can be introduced with such a combination are further discussed. Subsequently, challenges and opportunities are provided, seeking to point out future directions of 3D printed graphene-based metamaterials.  相似文献   
9.
Transition metal dichalcogenides exhibit several different phases (e.g., semiconducting 2H, metallic 1T, 1T′) arising from the collective and sluggish atomic displacements rooted in the charge‐lattice interaction. The coexistence of multiphase in a single sheet enables ubiquitous heterophase and inhomogeneous charge distribution. Herein, by combining the first‐principles calculations and experimental investigations, a strong charge transfer ability at the heterophase boundary of molybdenum disulfide (MoS2) assembled together with graphene is reported. By modulating the phase composition in MoS2, the performance of the nanohybrid for energy storage can be modulated, whereby remarkable gravimetric and volumetric capacitances of 272 F g?1 and 685 F cm?3 are demonstrated. As a proof of concept for energy application, a flexible solid‐state asymmetric supercapacitor is constructed with the MoS2‐graphene heterolayers, which shows superb energy and power densities (46.3 mWh cm?3 and 3.013 W cm?3, respectively). The present work demonstrates a new pathway for efficient charge flow and application in energy storage by engineering the phase boundary and interface in 2D materials of transition metal dichalcogenides.  相似文献   
10.
A key requirement for three-dimensional printing (3-DP) of medical implants is the availability of printable and biocompatible powder-binder systems. In this study we developed a powder mixture comprising tetracalcium phosphate (TTCP) as reactive component and β-tricalcium phosphate (β-TCP) or calcium sulfate as biodegradable fillers, which can be printed with an aqueous citric acid solution. The potential of this material combination was demonstrated printing various devices with intersecting channels and filigree structures. Two post-processing procedures, a sintering and a polymer infiltration process were established to substantially improve the mechanical properties of the printed devices. Preliminary examinations on relevant application properties including in vitro cytocompatibility testing indicate that the new powder-binder system represents an efficient approach to patient specific ceramic bone substitutes and scaffolds for bone tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号