首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   5篇
建筑科学   1篇
  2020年   1篇
  2018年   1篇
  2012年   2篇
  2009年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Low nutrient recovery in upland crop production systems has prompted studies to improve the current nutrient management practices to increase fertilizer efficiency. Field studies were conducted in two growing seasons (2012 and 2013) under two land management systems (till and no-till) to evaluate agronomic effectiveness of a multi-nutrient fertilizer briquette (fertilizer briquettes) for upland crop production, using corn as test crop. The fertilizer briquettes were produced through a simple physical compaction of ordinary granular fertilizers with a final nutrient composition of 23.9% N, 19.2% P2O5, 19.1% K2O, 0.9% Zn, and 2.5% S. The agronomic efficiency of the fertilizer briquettes were compared with commercial N sources, urea and ammonium sulfate supplied separately with phosphorus (P), potassium (K), zinc (Zn), and sulfur (S; for urea alone). During the wetter (2013) weather conditions, the fertilizer briquette treatment consistently produced the highest yields in both locations. At Ames Plantation, the fertilizer briquette treatment increased grain yields by ~ 16 and ~ 23% over the treatments having ammonium sulfate and urea granular fertilizers, respectively, and, in Jackson, by 16 and 34% respectively. Nutrient recovery efficiency was also greatest with the fertilizer briquettes treatment. However, during the drier weather conditions (2012), the fertilizer briquettes treatment was the least effective among the three treatments in terms of biomass and grain yields, and nutrient recovery efficiency. We conclude, with adequate rainfall conditions, the fertilizer briquettes could be an efficient fertilizer for upland crop production. However, under drier weather conditions where soil moisture is limited, the fertilizer briquettes may not be an ideal fertilizer source for upland crop production.  相似文献   
2.
Environmental benefits associated with reduced rates of nitrogen (N) application, while maintaining economically optimum yields have economic and social benefits. Although N is an indispensable plant nutrient, residual soil N could leach out to contaminate groundwater and surface water resources, particularly in sandy soils. A 2-year field study was conducted in an established bermudagrass (Cynodon dactylon) pasture in the Lower Suwannee Watershed, Florida, to evaluate N application rates on forage yield, forage quality, and nitrate (NO3-N) leaching in rapidly permeable upland sandy soils. Four N application rates (30, 50, 70, and 90 kg N ha−1 harvest−1) corresponding to 0.33, 0.55, 0.77 and IX, respectively, of recommended N rate (90 kg N ha−1 harvest−1) for bermudagrass hay production in Florida were evaluated vis-à-vis an unfertilized (0 N) control. Suction cups were installed near the center of each plot at two depths (30 and 100 cm) to monitor NO3-N leaching. The grass was harvested at 28 days intervals to determine dry matter yield, N uptake, and herbage nutritive value. Nitrogen application at the recommended rate produced the greatest total dry matter yield (~18.4 Mg ha−1 year−1), but a modeled economically optimum N rate of ~57 kg N ha−1 harvest−1 (~60% of the recommended N rate) projected an average dry matter yield of ~17.3 Mg ha−1 year−1, which represents >90% of the observed maximum yield. Nitrogen application increased nutritive quality of the grass, but increases in N application rate above 30 kg N ha−1 did not result in significant increases in in vitro digestible organic matter concentration, and tissue crude protein was not significant above 50 kg N ha−1. Across the sampling period, treatments with N rates ≤50 kg N ha−1 harvest−1 had leachate NO3-N concentration below the maximum contaminant limit of <10 mg l−1. Conversely, applying N at rates ≥70 kg N ha−1 harvest−1 resulted in leachate N concentration that exceeded the maximum contaminant limit, and suggest high risk of impacting groundwater quality, if such rates are applied to soils with coarse (sand) textures. The study demonstrates that recommendation of a single N application rate may not be appropriate under all agro-climatic conditions and, thus, a site-specific evaluation of best N management strategy is critical.  相似文献   
3.
4.
Several studies have shown that drinking-water treatment residuals (WTR) could be used to control mobility of excess phosphorus (P) and other oxyanions in poorly sorbing soils. Presently, only “aged” WTRs (those left, or manipulated, to dewater) are land applied. However, if demand for WTRs increase in the near future, freshly-generated WTRs could be considered for land application. To our knowledge, few studies have examined the reactivity and equilibration time of freshly-generated alum-based WTR (Al-WTR). A laboratory thermal incubation study was, therefore, conducted to determine various extractable Al forms in Al-WTR as a function of WTR “age”, and the time required for freshly generated Al-WTR to stabilize. Freshly-generated Al-WTR samples were collected directly from the discharge pumps of a drinking-water treatment plant, and thermally incubated at 52 °C, either with or without moisture control, for ≤ 24 wk. Additional dewatered Al-WTR samples of various ages (2wk- to 2y old) were also included in the study. Various methods of extracting Al [total-, oxalate (200 and 5mM), and Mehlich 1 extractants] were utilized to assess Al extractability over time. Freshly-generated Al-WTR samples were potentially more reactive (as reflected in greater 5mM oxalate extractable Al concentration) than dewatered Al-WTR samples stockpiled for ≥ 6 mo. Aluminum reactivity of the freshly-generated Al-WTR decreased with time. At least 6wk of thermal incubation (corresponding to ≥ 6 mo of field drying) was required to stabilize the most reactive Al form (5mM oxalate extractable Al concentration) of the Al-WTR. Although no adverse Al-WTR effects have been reported on plants and grazing animals (apparently because of low availability of free Al3+ in Al-WTR), land application of freshly-generated Al-WTRs (at least, those with similar physicochemical characteristics as the one utilized for the study) should be avoided.  相似文献   
5.
Nutrient Cycling in Agroecosystems - Effective fertilizer management is critical for sustainable maize production. Field trials were conducted in six locations in northern Ghana during the 2016 and...  相似文献   
6.
Phosphorus inputs are required in highly weathered tropical soils for sustainable crop production. However, high cost and limited access to mineral P fertilizers limit their use by resource-poor farmers in West Africa. Direct application of finely ground phosphate rock (PR) is a promising alternative but low solubility of PR hampers its use. Co-application of PR with manure could be a low cost means of improving the solubility of natural PR and improve their agronomic effectiveness. Our objective was to quantitatively estimate the enhancement effect of poultry manure on P availability from low reactive PR (Togo phosphate rock) applied to highly weathered soils. We utilized two highly weathered soils from Ghana and Brazil for this greenhouse study. Using 32P isotopic tracers, the agronomic effectiveness of poultry-manure-amended Togo rock phosphate (TPR) was compared with partially acidulated Togo rock phosphate (PAPR) and triple superphosphate (TSP). Four rates of poultry manure: 0, low (30 mg P kg−1 soil), high (60 mg P kg−1 soil) and very high (120 mg P kg−1 soil) were, respectively, added to a constant amendment (60 mg P kg−1 soil) of the P sources and applied to each pot of 4 kg soil. A Randomized Complete Block Design was used for the greenhouse experiment and Maize (Zea mays L.) was used as a test crop. The plants were grown for 42 days after which the above ground biomass was harvested for analysis. Without poultry manure addition, the agronomic effectiveness, represented by the relative agronomic effectiveness (RAE) and proportion of P derived from fertilizer (% Pdff) was in the order TSP > PAPR > TPR = control (P0). In the presence of low rate poultry manure addition, the agronomic effectiveness followed the order TSP > PAPR = PR > P0. However, at the high and very high rates of poultry manure addition, no significant differences in agronomic effectiveness were observed among the P sources, suggesting that at this rate of poultry manure addition, PR was equally as effective as TSP. The study showed that direct application of PR co-applied with poultry manure at a 1:1 P ratio will be a viable option for P replenishment. Thus a combination of PR and poultry manure could be a cost-effective means of ensuring sustainable agricultural production in P-deficient, highly weathered tropical soils.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号