首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   3篇
一般工业技术   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  1969年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The incorporation of viscoelastic materials represents an effective strategy to reduce the vibratory level of structural components. Thermoplastic vulcanizates (TPVs) are a special type of viscoelastic material that combines the elastomeric properties of rubbers with the easy processing of thermoplastics. In the present work, we propose innovative ways to improve the damping properties of high‐performance TPVs by using rubbers with carboxylic functionalities. For that, TPVs from physical blends of carboxylated hydrogenated acrylonitrile butadiene rubber (XHNBR) and polyamide 6 (PA6) were prepared. The chain dynamics of different mixed crosslink systems containing peroxide, metal oxides and hindered phenolic antioxidants were investigated in order to find the most suitable strategy to design a high‐performance TPV system with upgraded damping properties. The results indicate that the damping performance of the TPV system can be tailored by controlling the type and magnitude of the bonding interactions between the mixed crosslink system and the XHNBR rubber phase. Therefore, this study demonstrates the potential of TPV systems containing carboxylic rubbers as high‐performance damping materials. © 2020 Society of Chemical Industry  相似文献   
2.
Carbon fiber sheet molding compounds (C-SMCs) are discontinuous fiber reinforced composite materials. Among them, epoxy-based C-SMCs are becoming relevant materials due to their high thermomechanical performance and better formability than continuous fiber reinforced composites. The thermomechanical performance of epoxy resins and epoxy based continuous carbon fiber composites have shown to be influenced by hygrothermal aging. In this work, this influence is studied for an epoxy-based C-SMC. Epoxy-based C-SMC samples were hygrothermally aged by means of accelerated conditioning, exposing them to 65% relative humidity, and 80°C in a climatic chamber. The equilibrium moisture content, as well as the moisture diffusion coefficient has been determined. The thermomechanical properties of epoxy C-SMC have been analyzed by dynamic mechanical analysis, tensile, 3-point bending, and short beam tests in dry and aged samples. The results showed that epoxy C-SMC is affected by hygrothermal aging in the cases of moisture intake and its effects on Tg value, but interestingly, the hygrothermal aging did not generate any degradation effects in the mechanical response of epoxy C-SMC.  相似文献   
3.
With the aim of curbing air pollution and addressing climate change, the use of low density thermoplastic elastomers (TPEs) in transportation could be a useful way to lighten the vehicle weight. For that, melt blending of high performance rubber and thermoplastics is an attractive way of preparing high performance TPEs. In this work, several TPEs have been prepared by melt blending of hydrogenated acrylonitrile butadiene rubber (HNBR) with polyamide 6 (PA6), adding different amounts of carboxylated HNBR (XHNBR) as compatibilizer: 40/60/0, 40/42/18, 40/30/30 and 40/18/42 (PA6/HNBR/XHNBR). The resulting blends were investigated using melt rheological measurements, morphological observations (scanning electron microscopy and polarized optical microscopy), dynamic mechanical analysis, differential scanning calorimetry analysis and mechanical tests. A biphasic morphology was noted for all TPEs. An increase in XHNBR amount changes the morphology from dispersed to co‐continuous. This evolution is explained by the change in the melt rheological properties of the HNBR/XHNBR rubber phase. Moreover, the introduction of 42% XHNBR resulted in an increase in the glass transition temperature of both rubber and PA6 phases. This double Tg increase phenomenon was attributed to the interfacial interactions between the carboxyl groups in XHNBR and the amine end groups in PA6. Additionally, thermal analysis revealed a reduced crystallinity of PA6 in the blend, which corresponds to enhanced interfacial interactions. The interfacial adhesion and the co‐continuous morphology resulted in an improved ductility. This study reveals the possibility of obtaining TPE blends with tunable thermal and mechanical properties by controlling both interfacial interactions and morphology. © 2019 Society of Chemical Industry  相似文献   
4.
Résumé On décrit une méthode de cure accélérée, développée dans les laboratoires de l'INTI, qui permet de prédire par corrélation la résistance à 28 jours du mortier normal RILEM-CEMBUREAU. Les 178 points de corrélation obtenus ont accusé une dispersion de l'ordre de ±5% au niveau 68,2 % de la distribution normale. La méthode repose sur un chauffage à 50° C qui détermine une réduction du temps de prise. La méthode a été mise au point par l'essai de plus de 3 700 éprouvettes.
Summary An accelerated curing method, developed in the INTI laboratories, is described, which offers the possibility of forecasting the strength of nromal Rilem-Cembureau mortar by correlation at 28 days. The 178 correlation points obtained have shown a scatter of the order of ± 5% at the level 68,2% of the normal distribution. The method, developed by the testing of more than 3 700 test pieces, is based on a heating at 50°C which reduces the setting time.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号