首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5546篇
  免费   116篇
  国内免费   24篇
电工技术   257篇
综合类   7篇
化学工业   1422篇
金属工艺   161篇
机械仪表   148篇
建筑科学   129篇
能源动力   209篇
轻工业   359篇
水利工程   12篇
石油天然气   6篇
无线电   482篇
一般工业技术   1038篇
冶金工业   901篇
原子能技术   178篇
自动化技术   377篇
  2023年   21篇
  2022年   38篇
  2021年   80篇
  2020年   40篇
  2019年   49篇
  2018年   80篇
  2017年   59篇
  2016年   81篇
  2015年   68篇
  2014年   101篇
  2013年   261篇
  2012年   158篇
  2011年   269篇
  2010年   209篇
  2009年   200篇
  2008年   259篇
  2007年   174篇
  2006年   203篇
  2005年   188篇
  2004年   163篇
  2003年   175篇
  2002年   143篇
  2001年   110篇
  2000年   118篇
  1999年   120篇
  1998年   363篇
  1997年   285篇
  1996年   196篇
  1995年   124篇
  1994年   112篇
  1993年   126篇
  1992年   73篇
  1991年   64篇
  1990年   72篇
  1989年   73篇
  1988年   57篇
  1987年   66篇
  1986年   72篇
  1985年   76篇
  1984年   93篇
  1983年   71篇
  1982年   59篇
  1981年   54篇
  1980年   45篇
  1979年   47篇
  1978年   34篇
  1977年   32篇
  1976年   38篇
  1974年   19篇
  1972年   13篇
排序方式: 共有5686条查询结果,搜索用时 15 毫秒
1.
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac.  相似文献   
2.
While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history.  相似文献   
3.
The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.  相似文献   
4.
The integration of reinforcement learning (RL) and imitation learning (IL) is an important problem that has long been studied in the field of intelligent robotics. RL optimizes policies to maximize the cumulative reward, whereas IL attempts to extract general knowledge about the trajectories demonstrated by experts, i.e, demonstrators. Because each has its own drawbacks, many methods combining them and compensating for each set of drawbacks have been explored thus far. However, many of these methods are heuristic and do not have a solid theoretical basis. This paper presents a new theory for integrating RL and IL by extending the probabilistic graphical model (PGM) framework for RL, control as inference. We develop a new PGM for RL with multiple types of rewards, called probabilistic graphical model for Markov decision processes with multiple optimality emissions (pMDP-MO). Furthermore, we demonstrate that the integrated learning method of RL and IL can be formulated as a probabilistic inference of policies on pMDP-MO by considering the discriminator in generative adversarial imitation learning (GAIL) as an additional optimality emission. We adapt the GAIL and task-achievement reward to our proposed framework, achieving significantly better performance than policies trained with baseline methods.  相似文献   
5.
The World Robot Summit is a robot Olympics and aims to be held in a different country every four years from 2020. The concept of the Plant Disaster Prevention challenge is daily inspections, checks, and emergency response in industrial plants, and in this competition, robots must carry out these types of missions in a mock-up plant. The concept of the Tunnel Disaster Response and Recovery challenge is emergency response to tunnel disasters, and is a simulation competition whereby teams compete to show their ability to deal with disasters, by collecting information and removing debris. The Standard Disaster Robotics challenge assesses, in the form of a contest, the standard performance levels of a robot that are necessary for disaster prevention and emergency response. The World Robot Summit Preliminary Competition was held at Tokyo Big Sight in October 2018, and 36 teams participated in the Disaster Robotics Category. UGVs and UAVs contended the merits of new technology for solving complex problems, using core technologies such as mobility, sensing, recognition, performing operations, human interface, autonomous intelligence etc., as well as system integration and implementation of strategies for completing missions, gaining high-level results.  相似文献   
6.
7.
Photocatalysts have attracted great research interest owing to their excellent properties and potential for simultaneously addressing challenges related to energy needs and environmental pollution. Photocatalytic particles need to be in contact with their respective media to exhibit efficient photocatalytic performances. However, it is difficult to separate nanometer-sized photocatalytic materials from reaction media later, which may lead to secondary pollution and a poor recycling performance. Hydrogel photocatalysts with a three-dimensional (3D) network structures are promising support materials for photocatalysts based on features such as high specific surface areas and adsorption capacities and good environmental compatibility. In this review, hydrogel photocatalysts are classified into two different categories depending on their elemental composition and recent progresses in the methods for preparing hydrogel photocatalysts are summarized. Moreover, current applications of hydrogel photocatalysts in energy conversion and environmental remediation are reviewed. Furthermore, a comprehensive outlook and highlight future challenges in the development of hydrogel photocatalysts are presented.  相似文献   
8.
9.
The damage imposed on SiO x deposited nylon 6 films as a result of abrasion with a cotton cloth and Gelboflex testing was examined by evaluating the rate at which copper plates, which were enveloped by the damaged films, were corroded by H2S. Abrasion with a cotton cloth caused some micro-cracking of the SiO x layer and the permeation rate of H2S approached that of the uncoated nylon 6 film. Damage to the SiO x layer by twisting and crushing progressed gradually with the number of Gelboflex test cycles and correspondingly the corrosion rate of the copper plates increased. Comparison of the corrosion rates of the copper plates kept in the pouches made of various commercial films with those obtained for the damaged SiO x deposited nylon 6 films showed a clear relationship between the H2 permeation rate of the films and the corrosion rate of the copper plates by H2S.  相似文献   
10.
This paper describes the high performance of T-shaped-gate CMOS devices with effective channel lengths in the sub-0.1-μm region. These devices were fabricated by using selective W growth, which allows low-resistance gates smaller than 0.1 μm to be made without requiring fine lithography alignment. We used counter-doping to scale down the threshold voltage while still maintaining acceptable short-channel effects. This approach allowed us to make ring oscillators with a gate-delay time as short as 21 ps at 2 V with a gate length of 0.15 μm. Furthermore, we experimentally show that the high circuit speed of a sub-0.1-μm gate length CMOS device is mainly due to the PMOS device performance, especially in terms of its drivability  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号