首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   4篇
一般工业技术   2篇
  2022年   4篇
  2015年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The present study aims to compare the oxidative stress biomarkers, pro-inflammatory cytokines, and histological changes induced by three cardiovascular risk factors, namely, hypertension, dyslipidemia, and type 1 diabetes mellitus. Hypertension was induced with 40 mg/kg body weight (b.w.) of N omega-nitro-L-arginine-methyl (L-NAME) administered orally. Dyslipidemia was induced by the administration of a diet with a high cholesterol (2%) content. Diabetes mellitus was induced by intraperitoneal administration of a single dose of streptozocin (65 mg/kg). Malondialdehyde (MDA) and total oxidative status (TOS) are increased by all three cardiovascular risk factors (up to 207%). The indirect assessment of NO synthesis (NOx) is observed to be reduced after L-NAME administration (43%), and dyslipidemia induction (16%), while type 1 diabetes mellitus is associated with the highest levels of NOx (increased 112%). Hypertension, dyslipidemia, and type 1 diabetes reduced the total antioxidative capacity (TAC) and total thiol (SH) levels (up to 57%). The values of evaluated pro-inflammatory cytokines, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), assessed from the ascending aorta were elevated by all three cardiovascular risk factors, with the highest levels induced by type 1 diabetes mellitus (up to 259%). The histopathological examination of the ascending and descending aorta revealed reversible pro-atherogenic changes consisting of the accumulation of lipid droplets in the subendothelial connective tissue on rats with hypertension and dyslipidemia. Irreversible pro-atherogenic changes consisting of a reduction of the specific elasticity of the arteries were observed in rats with type 1 diabetes mellitus. Type 1 diabetes mellitus demonstrates an alteration of the oxidative stress parameters, the elevation of tissue levels of the pro-inflammatory cytokines and causing irreversible pro-atherogenic changes on the aortic wall.  相似文献   
2.
The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated many challenges to find an effective drug combination for hospitalized patients with severe forms of coronavirus disease 2019 (COVID-19) pneumonia. We conducted a retrospective cohort study, including 182 patients with severe COVID-19 pneumonia hospitalized between March and October 2021 in a Pneumology Hospital from Cluj-Napoca, Romania. Among patients treated with standard of care, 100 patients received remdesivir (R group) and 82 patients received the combination of remdesivir plus tocilizumab (RT group). We compared the clinical outcomes, the inflammatory markers, superinfections, oxygen requirement, intensive care unit (ICU) admission and mortality rate before drug administration and 7 days after in R group and RT group. Borg score and oxygen support showed an improvement in the R group (p < 0.005). Neutrophiles, C-reactive protein (CRP) and serum ferritin levels decreased significantly in RT group but with a higher rate of superinfection in this group. ICU admission and death did not differ significantly between groups. The combination of remdesivir plus tocilizumab led to a significantly improvement in the inflammatory markers and a decrease in the oxygen requirement. Although the superinfection rate was higher in RT group than in R group, no significant difference was found in the ICU admission and mortality rate between the groups.  相似文献   
3.
4.
5.
Because the combination of π-conjugated polymers with biocompatible synthetic counterparts leads to the development of bio-relevant functional materials, this paper reports a new oligo(2-methyl-2-oxazoline) (OMeOx)-containing thiophene macromonomer, denoted Th-OMeOx. It can be used as a reactive precursor for synthesis of a polymerizable 2,2’-3-OMeOx-substituted bithiophene by Suzuki coupling. Also a grafted polythiophene amphiphile with OMeOx side chains was synthesized by its self-acid-assisted polymerization (SAAP) in bulk. The results showed that Th-OMeOx is not only a reactive intermediate but also a versatile functional material in itself. This is due to the presence of 2-bromo-substituted thiophene and ω-hydroxyl functional end-groups, and due to the multiple functionalities encoded in its structure (photosensitivity, water self-dispersibility, self-assembling capacity). Thus, analysis of its behavior in solvents of different selectivities revealed that Th-OMeOx forms self-assembled structures (micelles or vesicles) by “direct dissolution”.Unexpectedly, by exciting the Th-OMeOx micelles formed in water with λabs of the OMeOx repeating units, the intensity of fluorescence emission varied in a concentration-dependent manner.These self-assembled structures showed excitation-dependent luminescence as well. Attributed to the clusteroluminescence phenomenon due to the aggregation and through space interactions of electron-rich groups in non-conjugated, non-aromatic OMeOx, this behavior certifies that polypeptides mimic the character of Th-OMeOx as a non-conventional intrinsic luminescent material.  相似文献   
6.
The possibility that cerebrolysin, a mixture of several active fragments of neurotrophic factors and peptides induces neuroprotection following nanoparticles induced exacerbation of brain damage in heat stroke was examined in a rat model. For this purpose, the therapeutic efficacy of Cerebrolysin (2.5 or 5 ml/kg) recommended for stroke treatment was used in comparison with other drugs in standard doses recommended for such therapy in clinical situations e.g., levetiracetam (44 mg/kg), pregabalin (200 mg/kg), topiramate (40 mg/kg,i.p.) and valproate (400 mg/kg). Rats subjected to 4 h heat stress in a biological oxygen demand (BOD) incubator at 38 degrees C (Rel Humid 45-47%; Wind vel 22.4 to 25.6 cm/sec) developed profound behavioral symptoms of heat stroke e.g., hyperthermia, profuse salivation, prostration and gastric ulcerations in the stomach. These rats also exhibited marked brain pathology at this time. Thus, breakdown of the blood-brain barrier (BBB) to proteins associated with brain edema formation could be seen in these heat stressed rats as compared to control groups. The edematous brain areas showed profound neuronal damage and/or distortion in large areas of the neuropil. These pathological symptoms were further exacerbated in Cu or Ag nanoparticles treated group (50-60 nm particle size, 50 mg/kg, i.p./day for 7 days) after identical heat stress on the 8th day. Pretreatment with cerebrolysin (2.5 ml/kg, i.v.) daily for 3 days in normal rats before heat stress significantly reduced the behavioral stress symptoms and the breakdown of the BBB function, edema formation and neuronal injuries. However, the magnitude and intensity of these neuroprotective effects were much less intense in all other drug treated rats after similar heat stress. On the other hand, almost double dose of cerebrolysin (5 ml/kg) was needed to achieve comparable neuroprotection in nanoparticles treated animals after heat stress. Whereas, double dose of all other compounds was much less effective in inducing neuroprotection in nanoparticles treated heat-exposed animals. These observations are the first to show that cerebrolysin exerts the most superior neuroprotective effects in heat stress as compared to other neuroprotective agents on brain pathology in normal and in nanoparticles treated group. Furthermore, cerebrolysin in double dose was the most effective in inducing neuroprotection in nanoparticles treated heat exposed rats on brain pathology as compared to double doses of other drugs. Taken together, our results show that cerebrolysin has the most superior neuroprotective effects on brain pathology in heat stroke in both normal and nanoparticles treated rats as compared to other contemporary neuroprotective agents, not reported earlier.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号