首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学工业   6篇
一般工业技术   1篇
  2013年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Microwave synthesis was used to grow single crystals of a new organic–inorganic supramolecular assembly, [V10O27(OH)] · 2(C6N2H14) · (C6N2H13) · (C6N2H12) · 2H2O, in a very short time compared to the conventional solution technique. In order to generate crystals suitable for single crystal experiments, an equimolar mixture of reactants and a few hours of microwave heating are required. Although non-merohedral twinning is an inherent problem, the crystal structure can be solved and refined in the orthorhombic space group Pna2 1 with a = 20.972(4) Å, b = 10.3380(14) Å, c = 20.432(3) Å, Z = 4, with an excellent result, R(F2) = 0.0431. The assembly is hydrogen bond-assisted and built up of the monoprotonated decavanadate and 1,4-diazabicyclo[2.2.2]octane of various degrees of protonation. The number and location of protons on both the inorganic and organic motifs govern the formation of the extensive hydrogen bonding network, which in turn regulates the assembly architecture.  相似文献   
2.
Summary The inorganic–organic hybrid [VIV 4O10VV 2O4] (C6H14N2)·H2O polymeric framework was prepared under mild hydrothermal conditions from a mixture of DABCO and V2O5 in deionized water with a 1:1:450 mole ratio, at neutral pH. The reaction was carried out at 180 °C for 3 days under autogenous pressure yielding phase pure crystals product. The crystal structure was studied using both powder and single crystal X-ray crystallography, revealing the structure to be of the ({UuDd}:T*)α′ type in the SP+T class and Z-T subclass. The presence of the organic cation was confirmed by FT-IR spectrum and chemical composition analysis. The structure was thermally stable up to over 400 °C, and showed ferromagnetic character at room temperature with the maximum molar susceptibility of 8.26 × 10−3 emu/mol−1 at zero applied field.  相似文献   
3.
Hydrothermal synthetic parameters were studied and optimized for the preparation of new coordination polymeric materials based on Co(II) and 4,4′-bipy. A new polymeric compound, [Co2(H2O)2(OH)2(4,4′-bipy)8](NO3)2·2(4,4′-bipy) 10(H2O) (1), was prepared and structurally characterized by single crystal experiment. The framework of (1) is made up of two different one-dimensional substructures, i.e., the neutral chain A and positively charged chain B, both of which share the same nodes and node linkers. This is rarely found, especially from a one-pot crystal growth technique. Two other crystals were also identified, i.e., [Co(SO4)(H2O)3(4,4′-bipy)]·2(H2O), and K2Co(H2O)6(SO4)2. The optimization of synthetic parameters apparently favors the formation of different polymeric structures, and this can be experimentally fine tuned. The influences of these parameters on phase formation, purity and crystal growth are discussed. The complicated thermogravimetric property of the new compound is also reported.  相似文献   
4.
Absract A series of four diaminoalkane templated vanadium oxide polymeric frameworks, [V2IVO8V2VO2](C2H10N2), [V2IVO8V2VO2](C3H12N2), [V4IVO10V2VO4](C4H14N2) and [V4IVO10V2VO4](C5H16N2), have been successfully prepared under hydrothermal conditions. The crystal structures are fully characterized revealing layered structures composed of common inorganic building units, namely {VIVO5} square pyramids and {VVO4} tetrahedra. The layer registries are different depending on the molecular structure of the diaminoalkanes, and can be accounted for by the organic-inorganic interface interactions. The analysis of hydrogen bonds indicates their important role in directing two- and three-dimensional structural architectures. The influences of different diaminoalkanes are also apparent in both thermogravimetric and complex magnetic behaviors, and are discussed in details.  相似文献   
5.
A pillared-layered coordination polymer of formula Co(H2NCH2CH2NH2)SO4 (1) has been synthesized under solvothermal condition, and fully characterized. The three-dimensional structure of 1 is built up from cobalt sulfate sheets, each of which is composed of regularly alternating CoO4N2 octahedra and SO4 tetrahedra, with ethylenediamine pillars connecting the adjacent sheets. The coordinate covalent and hydrogen bonds have been revealed to exhibit an important role in the organization of the structure. The compound is found to be thermally stable up to, and above, 573 K and exhibits paramagnetic behavior at room temperature.  相似文献   
6.
A new flexible triazine-based polycarboxylate metal–organic framework, [Sm2(TTHA)(H2O)4]·9H2O (I) (TTHA = 1,3,5-triazine-2,4,6-triamine hexaacetate), has been synthesized under hydrothermal conditions and characterized by single crystal X-ray diffraction, elemental analysis and FT-IR spectroscopy. Crystal data for I are monoclinic C2/c, a = 12.6974(13) Å, b = 16.7309(12) Å, c = 14.8076(15) Å, β = 91.452(8)°, V = 3,144.7(5) Å3. Each SmIII ion is 9-coordinate in a distorted tri-capped trigonal prismatic geometry; but, the principal inorganic building block is {Sm2O16}, which comprises two of these polyhedra that share an edge. The complex exhibits a three-dimensional open-framework structure of approximately 31 % void volume, which comprises two types of channels oriented in three directions; [0 0 1], [1 1 0] and [?1 1 0]. The network can be simplified into either the cooperite (pts) or anatase (ant) topologies depending on the choice of nodes. The UV–Vis spectra of the compound are dominated by the absorption of the TTHA ligand. Thermogravimetric analysis shows that the loss of channel and coordinated water upon heating occurs in two distinct steps.  相似文献   
7.
Effect of calcination conditions on phase formation and particle size of lead zirconate (PbZrO3) powders synthesized by a solid-state reaction with different vibro-milling times was investigated. A combination of the milling time and calcination conditions was found to have a pronounced effect on both the phase formation and particle size of the calcined PbZrO3 powders. The calcination temperature for the formation of single-phase perovskite lead zirconate was lower when longer milling times were applied. The optimal combination of the milling time and calcination condition for the production of the smallest nanosized (∼28 nm) high purity PbZrO3 powders is 35 h and 750 °C for 4 h with heating/cooling rates of 30 °C/min, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号