首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   8篇
化学工业   23篇
金属工艺   3篇
机械仪表   1篇
能源动力   1篇
轻工业   5篇
无线电   11篇
一般工业技术   26篇
冶金工业   2篇
自动化技术   6篇
  2023年   4篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1998年   1篇
  1991年   1篇
  1986年   3篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
2.
Response characteristics of a microcantilever, such as resonant frequency, amplitude, phase and quality factor, can be used for absolute pressure measurements in the range of 10−4 to 103 Torr. To this end, it would be very convenient to have the resonance of the microcantilever actuated and detected electrostatically. Herein, we report the nonlinear dynamics of microcantilevers under varying pressure and different gases using the harmonic detection of resonance (HDR) technique [J. Gaillard, M.J. Skove, R. Ciocan, A.M. Rao, Electrical detection of oscillations in 340 microcantilevers and nanocantilevers, Rev. Sci. Instrum. 77 (2006) 073907]. The HDR technique exploits nonlinearities in the cantilever-counter electrode system to allow electrostatic actuation and detection of the responses of the microcantilever to the pressure and gas composition. In particular, the 2nd and 3rd harmonics of the measured charge on the cantilever are investigated. The microcantilever demonstrates a quality factor of 10,000 at 10−3 Torr, and a usable response in the range from 10−3 to 103 Torr. The use of different harmonics can enable us to adjust the range of pressures over which the sensor has an efficacious response, enhancing its sensitivity to a particular environment. The experimental results are in reasonable agreement with theoretical calculations, despite the nonlinearities involved.  相似文献   
3.
4.
Green tea is a rich source of catechins, which when purified have a high economic value as they can be used as a supplement in several products, to increase their health benefits. Catechins are regarded as desired components with several applications in a variety of areas such as foods, cosmetics and pharmaceuticals. A multicomponent sorption model has been developed for the separation of catechins from liquid tea streams, with macroporous resins in a packed bed column. Two commercially available food grade resins were considered: Amberlite XADHP and Diaion HP20. For the desorption step, two food grade solvents are used: water and ethanol. The adsorption and desorption behaviour is subsequently mathematically described with one-dimensional axial dispersed plug flow model that can accurately simulate the dynamics of the solvent swing sorption columns. The model parameters were regressed from experimental data. Five components are modelled in the competitive sorption: the main four catechins present in green tea and caffeine. The model was used for the process design and optimization for the recovery of catechins from green tea.  相似文献   
5.
Finite element analysis (FEA) was used to model the joining of titanium grade 2 (Ti) to AISI 321 stainless steel (SS) transition joint of lap configuration with grooves at the interface on SS side. The hot forming of Ti for filling the grooves without defects was simulated. FEA involving large plastic flow with sticking friction condition was initially validated using compression test on cylindrical specimen at 900 °C. The barreled shape and a no-deformation zone in the sample predicted by FEA matched with those of the compression experiments. For the joining process, FEA computed the distribution of strain and hydrostatic stress in Ti and the minimum ram load required for a defect-free joint. The hot forming parameters for Ti to fill the grooves without defects and any geometrical distortion of the die were found to be 0.001 s?1 at 900 °C. Using these conditions a defect-free Ti-SS joint was experimentally produced.  相似文献   
6.
Pyrene was introduced into cavities in functionalized single-walled and multiple-walled carbon nanotubes to be used as a molecular probe in the study of encapsulation. The solubility of these materials in common organic solvents allowed solution-phase absorption and emission spectroscopic measurements. The results, which are consistent with the formation of pyrene excimer, are explained in terms of high local pyrene concentrations and perhaps pyrene microcrystals inside the carbon nanotube cavities. The fluorescence decay results show that there is significant quenching of pyrene excited states by the hosting carbon nanotubes.  相似文献   
7.
A pulse tube cryocooler (PTC) for future metrological satellites has been developed at one of the lead centers of the Indian Space Research Organisation in Bangalore, India for cooling on-board Infrared (IR) detectors to 80 K.A study has been conducted on the coldfinger of PTC to understand the off-state heat loads on the cooler by varying the value of gravity numerically in ANSYS FLUENT and experimentally by orienting the setup with respect to gravity. The off-state parasitic losses represent a major heat load in on-board applications that include redundant, viz. nonoperating coolers. To find out the amount of off-state parasitic heat losses in a nonoperating coldfinger of the PTC experimentally, transient warm-up technique was used. Various heat loads were applied experimentally on the cryo-tip at temperatures ranging from 80 to 100 K for determining the parasitic losses. The effect of orientation of PTC on the off-state parasitic heat load with respect to gravity is studied and presented in this paper. Enhancement due to free convection heat flow normalized by gas molecular conduction in pulse tube is analyzed using computational fluid dynamics to verify and compare with experimental results. The best orientation angle where the parasitic is low is when the cold end of the coldfinger of pulse tube cryocooler faces down (0°) and high when the cold end of the coldfinger is oriented to 135°.  相似文献   
8.
In this paper, we report the two stage growth of Cu2ZnSnS4 (CZTS) thin films as a function of sulfurization time. First, magnetron sputtered metallic precursors were deposited sequentially (Zn/Cu/Sn/Cu) over rotating glass substrates held at 230?°C. Later, the sputtered precursors were heat treated at 500?°C in the ambiance of sulfur for various time durations in the range, 10–120 min. The sulfur treated samples were examined using various analytical tools to understand the role of sulfurization time on the CZTS growth and properties. From composition and structural analysis, Zn/Cu/Sn/Cu precursors sulfurized for shorter duration (10 and 20 min) revealed severe deficiency of sulfur that resulted in several metallic, bi-metallic and metal sulfide phases. With the increase of sulfurization time to 30 min, sulfur incorporation was enhanced and reached stoichiometric ratio (~50% S) for CZTS growth, however, samples were poorly crystalline in nature and consisted of prominent Cu2?xS phase as well. The Zn/Cu/Sn/Cu precursors sulfurized for 60 min exhibited prominent CZTS phase without Cu2?xS phase. Further, rise in sulfurization time to 120 min enabled drastic improvement in crystallinity of CZTS phase. Raman mapping over 60 µm × 60 µm for these films confirmed the homogeneous phase growth of CZTS. XPS study revealed the oxidation states of Cu1+, Zn2+, Sn4+ and S2? in CZTS films. The optimized films showed high absorption coefficient of 105 cm?1 with an optical band gap of 1.51 eV. These films showed leaf like grain morphology with high mobility and low resistivity of 18.2 cm2/V-s and 0.7 Ω-cm, respectively.  相似文献   
9.
10.
We report a fully electrical microcantilever device that utilizes capacitance for both actuation and detection and show that it can characterize various gases with a bare silicon microcantilever. We find the motion of the cantilever as it rings down when the oscillating force is removed, by measuring the voltage induced by the oscillating capacitance in the microcantilever∕counterelectrode system. The ringdown waveform was analyzed using an iterative numerical algorithm to calculate the oscillator motion, modeling the cantilever∕electrode capacitance to calculate the electrostatic force. We find that nonlinearity in the motion of the cantilever is not necessarily a disadvantage. After calibration, we simultaneously measure viscosity and density of several gaseous mixtures, yielding viscosities within ±2% and densities within ±6% of NIST values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号