首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
电工技术   2篇
化学工业   15篇
金属工艺   1篇
机械仪表   1篇
轻工业   1篇
无线电   3篇
一般工业技术   6篇
冶金工业   2篇
原子能技术   1篇
自动化技术   5篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
Organic solvent nanofiltration (OSN) is gradually expanding from academic research to industrial implementation. The need for membranes with low and sharp molecular weight cutoffs that are able to operate under aggressive OSN conditions is increasing. However, the lack of comparable and uniform performance data frustrates the screening and membrane selection for processes. Here, a collaboration is presented between several academic and industrial partners analyzing the separation performance of 10 different membranes using three model process mixtures. Membrane materials range from classic polymeric and thin film composites (TFCs) to hybrid ceramic types. The model solutions were chosen to mimic cases relevant to today's industrial use: relatively low molar mass solutes (330–550 Da) in n-heptane, toluene, and anisole.  相似文献   
2.
3.
Coke deposition mechanism on a commercial Pt-Re/γ-Al2O3 naphtha reforming catalyst was studied. A used catalyst that was in industrial reforming operation for 28 months, as well as the fresh catalyst of the unit were characterized using XRD, XRF, and nitrogen adsorption/desorption analyses. Carbon and sulfur contents of the fresh and the used catalysts were determined using Leco combustion analyzer. The pore size distributions (PSD) of the fresh and the used reforming catalysts were determined using BJH and Comparison Plot methods. The Comparison Plot method produced the most reasonable PSDs for the catalysts. Through comparison of the PSDs of the fresh and the used catalysts, it was revealed that coke deposited on both micropores and mesopores of the catalyst at a constant thickness of 1.0 nm. The constant coke thickness on the catalyst pore walls in the naphtha reforming process (temp. ∼ 500 °C) implies that coke deposition reaction is the slow controlling step in comparison to the fast mass transfer rate of coke ingredients into the pores. The bulk density of the deposited coke on the used catalyst was calculated as 0.966 g/cm3.  相似文献   
4.
Recent progress in the development of biosensors has created a demand for high-throughput sample preparation techniques that can be easily integrated into microfluidic or lab-on-a-chip platforms. One mechanism that may satisfy this demand is deterministic lateral displacement (DLD), which uses hydrodynamic forces to separate particles based on size. Numerous medically relevant cellular organisms, such as circulating tumor cells (10–15 µm) and red blood cells (6–8 µm), can be manipulated using microscale DLD devices. In general, these often-viscous samples require some form of dilution or other treatment prior to microfluidic transport, further increasing the need for high-throughput operation to compensate for the increased sample volume. However, high-throughput DLD devices will require a high flow rate, leading to an increase in Reynolds numbers (Re) much higher than those covered by existing studies for microscale (≤?100 µm) DLD devices. This study characterizes the separation performance for microscale DLD devices in the high-Re regime (10?<?Re?<?60) through numerical simulation and experimental validation. As Re increases, streamlines evolve and microvortices emerge in the wake of the pillars, resulting in a particle trajectory shift within the DLD array. This differs from previous DLD works, in that traditional models only account for streamlines that are characteristic of low-Re flow, with no consideration for the transformation of these streamlines with increasing Re. We have established a trend through numerical modeling, which agrees with our experimental findings, to serve as a guideline for microscale DLD performance in the high-Re regime. Finally, this new phenomenon could be exploited to design passive DLD devices with a dynamic separation range, controlled simply by adjusting the device flow rate.  相似文献   
5.
6.
Self-Assembly Monolayers (SAMs) are considered a promising route for solving technological hindrances (such as bias-stress, contact resistance, charge trapping) affecting the electrical performances of the Organic Field-Effect Transistors (OFETs). Here we use an OFET based on pentacene thin film to investigate the charge transport across conjugated SAMs at the Au/pentacene interface. We synthesized a homolog series of π-conjugated molecules, termed Tn-C8-SH, consisting of a n-unit oligothienyl Tn (n = 1…4) bound to an octane-1-thiol (C8-SH) chain that self-assembles on the Au electrodes. The multi-parametric response of such devices yields an exponential behavior of the field-effect mobility (μ), current density (J), and total resistivity (R), due to the SAM at the charge injection interface (i.e. Au-SAM-pentacene). The surface treatment of the OFETs induces a clear stabilization of different parameters, like sub-threshold slope and threshold voltage, thanks to standardized steps in the fabrication process.  相似文献   
7.
Ce0.8Gd0.2O2−δ-FeCo2O4 composites are attractive candidate materials for high-purity oxygen generation providing robust chemical stability. Aiming for future industrial applications, a feasible solid-state reaction process with one thermal processing step was used to synthesize 50 wt% Ce0.8Gd0.2O2−δ:50 wt% FeCo2O4 and 85 wt% Ce0.8Gd0.2O2−δ:15 wt% FeCo2O4 composites. Mechanical reliabilities of the sintered membranes were assessed based on the characterized mechanical properties and subcritical crack growth behavior. In general, the fracture strengths of as-sintered membranes were reduced by tensile residual stresses and microcracks. In particular, the enhanced subcritical crack growth behavior, which leads to limited stress tolerance and high failure probability after a 10-year operation, was evaluated in more detail. Further materials and processing improvements are needed to eliminate the tensile stress and microcracks to warrant a long-term reliable operation of the composites.  相似文献   
8.
9.
Structural and Multidisciplinary Optimization - The complexity of plug-in hybrid-electric vehicles (PHEVs) motivates the simultaneous integration of component design and supervisory control...  相似文献   
10.
This paper deals with the dynamic modeling and base inertial parameter determination of a general 5R 2-degree-of-freedom spherical parallel manipulator. By using a new geometric approach, inverse and forward kinematic problem are transformed to the problem of determining the intersection of two cones with common vertex. Compared to other proposed methods, this approach yields more compact and closed-form solutions. The instantaneous kinematic and acceleration problem is solved via employing the screw theory. The dynamic model is formulated by means of the principle of virtual work and the concept of link Jacobian matrices. In order to verify the proposed methods and equations, a case study is performed, in which an orthogonal 2-DOF spherical parallel manipulator, named TezGoz, is considered. Performed simulations and comparisons with a SimMechanics model show the correctness of the derived equations. Furthermore, a reduced dynamic model is obtained by determining the base inertial parameters. To do so, first the dynamic model is rewritten in a linear matrix form with respect to the inertial parameters of the mechanism, then parameters are grouped to obtain a set of independent base parameters, reducing the number of inertial parameters from 40 to 19. As a result, while maintaining the accuracy, the computational time is reduced to 63% of that of the original dynamic model. Finally, to calibrate the dynamic model, an experimental dynamic identification is performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号