首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   2篇
化学工业   3篇
金属工艺   2篇
建筑科学   1篇
能源动力   3篇
无线电   6篇
一般工业技术   5篇
冶金工业   5篇
自动化技术   3篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2014年   1篇
  2013年   6篇
  2011年   1篇
  2010年   1篇
排序方式: 共有28条查询结果,搜索用时 312 毫秒
1.
In this paper,we have reported the synthesis of FeS2 of higher band gap energy(2.75 eV) by using capping reagent and its successive application in organic-inorganic based hybrid solar cells.Hydrothermal route was adopted for preparing iron pyrite(FeS2) nanoparticles with capping reagent PEG-400.The quality of synthesized FeS2 material was confirmed by X-ray diffraction,field emission scanning electron microscopy,transmission electron microscopy,Fourier transform infrared,thermogravimetric analyzer,and Raman study.The optical band gap energy and electro-chemical band gap energy of the synthesized FeS2 were investigated by UV-vis spectrophotometry and cyclic voltammetry.Finally band gap engineered FeS2 has been successfully used in conjunction with conjugated polymer MEHPPV for harvesting solar energy.The energy conversion efficiency was obtained as 0.064%with a fill-factor of 0.52.  相似文献   
2.
Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic–inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV–Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (? 6.97 eV) and LUMO (? 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.  相似文献   
3.
4.
A lean duplex stainless steel (LDSS) has been prepared with low-N content and processed by different thermo-mechanical schedules, similar to the industrial processing that comprised hot-rolling, cold-rolling, and annealing treatments. The microstructure developed in the present study on low-N LDSS has been compared to that of high-N LDSS as reported in the literature. As N is an austenite stabilizer, lower-N content reduced the stability of austenite and the austenite content in low-N LDSS with respect to the conventional LDSS. Due to low stability of austenite in low-N LDSS, cold rolling resulted in strain-induced martensitic transformation and the reversion of martensite to austenite during subsequent annealing contributed to significant grain refinement within the austenite regions. δ-ferrite grains in low-N LDSS, on the other hand, are refined by extended recovery mechanism. Initial solidification texture (mainly cube texture) within the δ-ferrite region finally converted into gamma-fiber texture after cold rolling and annealing. Although MS-brass component dominated the austenite texture in low-N LDSS after hot rolling and cold rolling, that even transformed into alpha-fiber texture after the final annealing. Due to the significant grain refinement and formation of beneficial texture within both austenite and ferrite, good combination of strength and ductility has been achieved in cold-rolled and annealed sample of low-N LDSS steel.  相似文献   
5.
6.
The improvement of the cooling performance of liquid-cooled microchannel heat sinks used for densely packed electronic circuits is sorted via passive techniques like tuning substrate or coolant properties. We propose a design for enhancing heat sink performance by simulataneously modifying the channel geometry and tuning the fluid rheology. By modeling the coolant as a power law fluid, its rheological behavior is varied ranging from shear-thinning to shear-thickening, alongside Newtonian fluid. We introduced tapering to the middle wall that separates the bottom and top channels of a double layered microchannel heat sink (DL-MCHS), causing both channels to converge. This convergence not only increases the flow velocity within the downstream microchannel but also reduces the apparent viscosity of the shear-thinning fluid being subjected to shear, resulting in enhanced thermal and hydraulic performance. We analyze the results from both the first and the second law of thermodynamics context, demonstrating that a tapered DL-MCHS with shear-thinning fluid outperforms a straight partition wall DL-MCHS with Newtonian coolant. However, we also discovered that extreme tapering compromises thermodynamic viability, but by fine-tuning the extent of tapering, we inferred that a DL-MCHS with shear-thinning fluid can become viable with little compromise in the thermal performance.  相似文献   
7.
In this study, we have synthesized semiconducting ZnO nanoparticles (NP) of different morphology in solvothermal route, by using different capping reagents and applied it as an acceptor in poly(2-methoxy-5(2-ethylhexyloxy)-phenylene-vinylene (MEHPPV):ZnO NP based hybrid photovoltaic devices. Material properties of ZnO NP of different morphology and the compositions were studied with the help of X-ray diffraction, scanning electron microscopy, fourier transform infrared and thermo gravimetric analysis. The direct band gap energies of flower, sphere and rod-like ZnO NP were calculated as 3.68, 3.15 and 3.25 eV by using Tauc’s plot with the help of UV–Vis absorption. We have studied different material properties of MEHPPV:ZnO composite to check their applicability as an active layer of hybrid solar cell. Photo-luminescence (PL) spectra of the composite materials were recorded to check PL energy quenching which is quite noticeable in case of sphere-like nanoparticle. Finally the hybrid solar cell of the structure ITO/PEDOT:PSS/MEHPPV:ZnO/Al has been fabricated and studied. From the current density (J)–voltage (V) characteristic, we have found that the solar cell fabricated with ZnO sphere-like structure gives better result.  相似文献   
8.
Sengupta S  Pandit A 《Water research》2011,45(11):3318-3330
Influx of Phosphorus (P) into freshwater ecosystems is the primary cause of eutrophication which has many undesirable effects. Therefore, P discharge limits for effluents from WWTPs is becoming increasingly common, and may be as low as 10 μg/L as P. While precipitation, filtration, membrane processes, Enhanced Biological Phosphorus Removal (EBPR) and Physico-chemical (adsorption based) methods have been successfully used to effect P removal, only adsorption has the potential to recover the P as a usable fertilizer. This benefit will gain importance with time since P is a non-renewable resource and is mined from P-rich rocks. This article provides details of a process where a polymeric anion exchanger is impregnated with iron oxide nanoparticles to effectuate selective P removal from wastewater and its recovery as a solid-phase fertilizer. Three such hybrid materials were studied: HAIX, DOW-HFO, & DOW-HFO-Cu. Each of these materials combines the durability, robustness, and ease-of-use of a polymeric ion-exchanger resin with the high sorption affinity of Hydrated Ferric Oxide (HFO) toward phosphate. Laboratory experiments demonstrate that each of the three materials studies can selectively remove phosphate from the background of competing anions and phosphorus can be recovered as a solid-phase fertilizer upon efficient regeneration of the exchanger and addition of a calcium or magnesium salt in equimolar (Ca/P or Mg/P) ratio. Also, there is no leaching of Fe or Cu from any of these hybrid exchangers.  相似文献   
9.
This work proposes a neuro‐fuzzy method for suggesting alternative crop production over a region using integrated data obtained from land‐survey maps as well as satellite imagery. The methodology proposed here uses an artificial neural network (multilayer perceptron, MLP) to predict alternative crop production. For each pixel, the MLP takes vector input comprising elevation, rainfall and goodness values of different existing crops. The first two components of the aforementioned input, that is, elevation and rainfall, are determined from contour information of land‐survey maps. The other components, such as goodness values of different existing crops, are based on the productivity estimates of soil determined by fuzzyfication and expert opinion (on soil) along with production quality by the Normalized Difference Vegetation Index (NDVI) obtained from satellite imagery. The methodology attempts to ensure that the suggested crop will also be a high productivity crop for that region.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号