首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
化学工业   8篇
机械仪表   1篇
能源动力   1篇
轻工业   3篇
一般工业技术   1篇
自动化技术   1篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2013年   4篇
  2010年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
3.
Waste polyurethane foam (w‐PU) and waste ethylene–vinyl acetate foam (w‐EVA) were used as fillers for the production of an ethylene–vinyl acetate (EVA) blend foam. Two different foaming techniques (single‐stage and heat–chill processes) were used for this purpose. The waste foam concentration was varied up to 30 wt % of the original EVA. The physical, mechanical, and morphological properties of the filled foam were studied. The single‐stage process produced blend foams with a lower density and a greater cell size than the foams obtained by the heat–chill process. The density and compression strength of the blend foam increased as the percentage of w‐PU foam increased. However, for the w‐EVA/EVA blend foams, the addition of w‐EVA foam did not significantly affect the density or compression strength compared to the original EVA foams. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44708.  相似文献   
4.
This paper presents a non-stoichiometric and thermodynamic model for steam reforming of Imperata cylindrica bio-oil for biohydrogen production. Thermodynamic analyses of major bio-oil components such as formic acid, propanoic acid, oleic acid, hexadecanoic acid and octanol produced from fast pyrolysis of I. cylindrica was examined. Sensitivity analyses of the operating conditions; temperature (100–1000 °C), pressure (1–10 atm) and steam to fuel ratio (1–10) were determined. The results showed an increase in biohydrogen yield with increasing temperature although the effect of pressure was negligible. Furthermore, increase in steam to fuel ratio favoured biohydrogen production. Maximum yield of 60 ± 10% at 500–810 °C temperature range and steam to fuel ratio 5–9 was obtained for formic acid, propanoic acid and octanol. The heavier components hexadecanoic and oleic acid maximum hydrogen yield are 40% (740 °C and S/F = 9) and 43% (810 °C and S/F = 8) respectively. However, the effect of pressure on biohydrogen yield at the selected reforming temperatures was negligible. Overall, the results of the study demonstrate that the non-stoichiometry and thermodynamic model can successfully predict biohydrogen yield as well as the composition of gas mixtures from the gasification and steam reforming of bio-oil from biomass resources. This will serve as a useful guide for further experimental works and process development.  相似文献   
5.
Surface functionalization studies for re-creating a ‘Lotus Leaf’ effect (super-hydrophobic) have been carried out for the past few decades, looking for the material which can provide high transparency, low energy surface, and high surface roughness. However, the conventional fabrication processes of super-hydrophobic surface proposed by the previous researchers were reported to be complicated. Therefore, in this research, we had created an alternative ways to produce near-super-hydrophobic surfaces using simplest processing routes with a controlled modification. The fabrication of polydimethylsiloxane/multi-walled carbon nanotubes (MWCNTs) hybrid thin film matrix on glass to produce near-super-hydrophobic surfaces is presented in this paper. There are three important parameters studied in producing hydrophobic surfaces based on the hybrid thin films; concentration of polydimethylsiloxane, concentration of MWCNTs, and droplet sizes, respectively. The study is carried out using polydimethylsiloxane of varied cross linker ratio (10:1, 30:1, and 50:1) with MWCNTs concentration of 1, 10, and 15 mg for 0.5, 2.0, 5.0, and 10 μl droplet sizes. The resulting hybrid elastomer-nanotube matrix thin films show that hydrophobicity increased with increasing cross linker ratio and MWCNTs percentage in the polydimethylsiloxane solution. A near-super-hydrophobic surface can be created when using 15 mg of MWCNTs with 50:1 cross linker ratio polydimethylsiloxane thin films, measured on 10 μl droplet size. The hybrid thin films produced can be potentially tailored to the application of biosensors, MEMS, and even commercial devices.  相似文献   
6.
Nanotechnology is an emerging field of science that applies particles between 1 and 100 nm in size for a range of practical uses. Nano‐technological discoveries have opened novel applications in biotechnology and agriculture. Many reactions involving nanoparticles (NPs) are more efficient compared to those of their respective bulk materials. NPs obtained from plant material, denoted as biogenic or phytosynthesised NPs, are preferred over chemically synthesised NPs due to their low toxicity, rapid reactions and cost‐effective production. NPs impart both positive and negative impacts on plant growth and development. NPs exhibit their unique actions as a function of their size, reactivity, surface area and concentration. An insight into NP biosynthesis and translocation within the plant system will shed some light on the roles and mechanisms of NP‐mediated regulation of plant metabolism. This review is a step towards that goal.Inspec keywords: nanofabrication, nanoparticles, nanobiotechnology, particle size, reviews, botany, biochemistryOther keywords: chemically synthesised NPs, low toxicity, rapid reactions, cost‐effective production, positive impacts, plant growth, translocation, plant system, plant metabolism, nanotechnological discoveries, biotechnology, agriculture, plant material, biogenic NPs, phytosynthesised NPs, bulk materials, nanoparticles, biosynthesis, surface area, review, size 1.0 nm to 100.0 nm  相似文献   
7.
Inositol hexaphosphate (IP6), or phytic acid is a natural dietary ingredient and has been described as a “natural cancer fighter”, being an essential component of nutritional diets. The marked anti-cancer effect of IP6 has resulted in our quest for an understanding of its mechanism of action. In particular, our data provided strong evidence for the induction of apoptotic cell death, which may be attributable to the up-regulation of Bax and down-regulation of Bcl-xl in favor of apoptosis. In addition, the up-regulation of caspase-3 and -8 expression and activation of both caspases may also contribute to the apoptotic cell death of human colorectal adenocarcinoma HT-29 cells when exposed to IP6. Collectively, this present study has shown that rice bran IP6 induces apoptosis, by regulating the pro- and anti-apoptotic markers; Bax and Bcl-xl and via the activation of caspase molecules (caspase-3 and -8).  相似文献   
8.
Epoxidized natural rubber–alumina nanoparticle composites were prepared by melt compounding with an internal mixer for a constant filler loading of 10 phr. Mixer parameters such as the mixing temperature, mixing time, and rotor speed were screened and optimized with response surface methodology to maximize the impact strength. The parameters were selected as three independent variables and the impact strength (J/m) was selected as the response in a screening factor study. The mixing temperature and its interaction terms were identified as insignificant factors with a P value greater than 0.0500. The optimum calculated values of the tested variables (rotor speed and mixing time) for the maximum impact strength were found to be a rotor speed of 60 rpm and a mixing time of 6 min with a predicted impact strength of 208.88 J/m. These predicted optimum parameters were tested in real experiments. The final impact strength was found to be close to the predicted value of 215.84 J/m, with only a 3.33% deviation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
9.
Fletcher  A. S. Augustine  Nirmal  D.  Ajayan  J.  Arivazhagan  L.  Hamza  K. Husna  Murugapandiyan  P. 《SILICON》2022,14(11):5941-5949
Silicon - The influence of double deck T-gate on LG = 0.2 μm AlN/GaN/AlGaN HEMT is analysed in this paper. The T-gate supported with Silicon Nitride provides a tremendous...  相似文献   
10.
A frequency reconfigurable antenna with a simple design structure and biasing circuit is presented. The antenna is able to configure its frequencies to operate either in multiband or wideband modes. The antenna is fed by a coplanar waveguide transmission line. The reconfiguration characteristics of the antenna is achieved by using PIN diode switches. The operating frequencies of the multiband mode are designed within the wideband mode operating range, from 2 to 6 GHz. Both simulated and measured results of S11, radiation pattern and realized gains are verified. The antenna allows a degree of freedom in providing the frequency reconfiguration from multiband to wideband mode and vice versa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号