首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   1篇
能源动力   1篇
  2018年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Sn2S3 nanocrystals (NCs) with both Mn2+ doping and Cu2+ incorporation were synthesized using a chemical bath deposition method. The Cu2+ ions formed an anorthic Mn2+-doped Cu2SnS3 structure with Eg =?1.44?eV, which altered the material's optical and photo/electrochemical properties. After coating the bare Nb2O5 electrode with Mn2+-doped Sn2S3 or Mn2+-doped Cu2SnS3 NCs, the photoluminescence spectrum was blue-shifted to 411.13?nm from 411.69?nm. Compared to the sample without Cu2+, the Cu2+-incorporated sample showed a slightly stronger emission at the same position, possibly due to disorder in the crystalline structure based on variations at the interface of Mn2+-doped Cu2SnS3 NCs. Electrochemical analysis showed a lower charge transfer resistance in the Mn2+-doped Cu2SnS3, which is related to its larger electroactive surface area. The larger electroactive surface area is attributed to the Faradaic redox processes at the electrode surface, which suppresses the carrier recombination. The coexistence of Cu2+ and Mn2+ ions shortened the electron transport pathway at the interface and improved the carrier diffusion coefficient and diffusion length, leading to a higher specific capacitance that implies higher energy storage performance. Finally, the I-V characteristics of the Mn2+-doped Cu2SnS3-coated Nb2O5 electrode under various light illumination conditions indicated its better efficiency in photoresponse, electron generation, and charge collection, owing to a superior charge transport mechanism. Detailed results were obtained about the charge dynamics in the as-prepared photo/electrochemical devices with Cu2+ incorporation in the Mn2+-doped SnS3 electrode.  相似文献   
2.
We report on the photovoltaic performance of Ag2Se quantum-dot (QD) sensitized solar cells. The QDs are grown by the successive ionic layer adsorption and reaction process. The external quantum efficiency (EQE) spectrum of the assembled cells covers the entire solar power spectrum of 350-2500 nm with an average EQE of ∼80% in the short-wavelength region (350-800 nm) and 56% over the entire solar spectrum. The effective photovoltaic range is ∼7-14 times broader than that of the cadmium calcogenide system—CdS and CdSe. The photocurrent that Ag2Se generates is four times higher than that of N3 dye. The best solar cell yields power conversion efficiencies of 1.76% and 3.12% under 99.4% and 9.7% sun, respectively. The results show that Ag2Se QDs can be used as a highly efficient broadband sensitizer for solar cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号