首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
化学工业   13篇
能源动力   3篇
轻工业   4篇
一般工业技术   4篇
冶金工业   1篇
自动化技术   1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  1995年   1篇
排序方式: 共有26条查询结果,搜索用时 26 毫秒
1.
2.
Green synthesis of nanoparticles has fuelled the use of biomaterials to synthesise a variety of metallic nanoparticles. The current study investigates the use of xylanases of Aspergillus niger L3 (NEA) and Trichoderma longibrachiatum L2 (TEA) to synthesise silver nanoparticles (AgNPs). Characterisation of AgNPs was carried out using UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy, while their effectiveness as antimicrobial, antioxidant, catalytic, anticoagulant, and thrombolytic agents were determined. The colloidal AgNPs was brownish with surface plasmon resonance at 402.5 and 410 nm for NEA‐AgNPs and TEA‐AgNPs, respectively; while FTIR indicated that protein molecules were responsible for the capping and stabilisation of the nanoparticles. The spherical nanoparticles had size of 15.21–77.49 nm. The nanoparticles significantly inhibited the growth of tested bacteria (63.20–88.10%) and fungi (82.20–86.10%), and also scavenged DPPH (37.48–79.42%) and hydrogen peroxide (20.50–96.50%). In addition, the AgNPs degraded malachite green (78.97%) and methylene blue (25.30%). Furthermore, the AgNPs displayed excellent anticoagulant and thrombolytic activities using human blood. This study has demonstrated the potential of xylanases to synthesise AgNPs which is to the best of our knowledge the first record of such. The present study underscores the relevance of xylanases in nanobiotechnology.Inspec keywords: visible spectra, catalysis, ultraviolet spectra, silver, microorganisms, antibacterial activity, transmission electron microscopy, surface plasmon resonance, nanoparticles, nanofabrication, colloids, blood, Fourier transform infrared spectra, particle sizeOther keywords: Ag, fungal xylanases‐mediated synthesis, silver nanoparticles, catalytic applications, biomedical applications, green synthesis, metallic nanoparticles, Trichoderma longibrachiatum L2, transmission electron microscopy, antimicrobial agents, antioxidant agents, catalytic agents, thrombolytic agents, surface plasmon resonance, spherical nanoparticles, FTIR spectra, anticoagulant agents, colloidal nanoparticles, biomaterials, Aspergillus niger L3, UV‐vis spectroscopy, Fourier transform infrared spectroscopy, protein molecules, DPPH, hydrogen peroxide, malachite green, methylene blue, human blood, nanobiotechnology  相似文献   
3.
4.
5.
6.
This study investigates the microstructure of the processed cassava leaves. Standard parts machined from low visible diffusion zone formed in low carbon steel pack cyanided using carbon steel were pack cyanided by high temperature in-situ diffusion of nascent carbon and nitrogen into austenite. Formation of a visible diffusion zone was confirmed after observation with a Reichert-Jung Polyval optical microscope coupled with Zeiss AxioCam ICc 1 camera. High magnification Scanning Electron Microscope (SEM) imaging of the visible diffusion zone was done with a CamScan Series 2 scanning electron microscope. The zone was found variable in depth as measured from a representative position. The structure of all samples consists of ferrite and pearlite as determined by optical and SEM examination. Resulting products were thus both tough and hard suitable for service environments requiring high resistance to both wear and impact failure.  相似文献   
7.
This paper presented a new prediction model of pressure–volume–temperature (PVT) properties of crude oil systems using type-2 fuzzy logic systems. PVT properties are very important in the reservoir engineering computations, and its accurate determination is important in the primary and subsequent development of an oil field. Earlier developed models are confronted with several limitations especially in uncertain situations coupled with their characteristics instability during predictions. In this work, a type-2 fuzzy logic based model is presented to improve PVT predictions. In the formulation used, the value of a membership function corresponding to a particular PVT properties value is no longer a crisp value; rather, it is associated with a range of values that can be characterized by a function that reflects the level of uncertainty. In this way, the model will be able to adequately model PVT properties. Comparative studies have been carried out and empirical results show that Type-2 FLS approach outperforms others in general and particularly in the area of stability, consistency and the ability to adequately handle uncertainties. Another unique advantage of the newly proposed model is its ability to generate, in addition to the normal target forecast, prediction intervals without extra computational cost.  相似文献   
8.
Poly(ether sulfone) (PES)‐toughened epoxy clay ternary nanocomposites were prepared by melt blending of PES with diglycidyl ether of bisphenol A epoxy resin along with Cloisite 30B followed by curing with 4,4′‐diaminodiphenylsulfone. The effect of organoclay and thermoplastic on the fracture toughness, permeability, viscoelasticity and thermomechanical properties of the epoxy system was investigated. A significant improvement in fracture toughness and modulus with reduced coefficient of thermal expansion (CTE) and gas permeability were observed with the addition of thermoplastic and clay to the epoxy system. Scanning electron microscopy of fracture‐failed specimens revealed crack path deflection and ductile fracture without phase separation. Oxygen gas permeability was reduced by 57% and fracture toughness was increased by 66% with the incorporation of 5 phr clay and 5 phr thermoplastic into the epoxy system. Optical transparency was retained even with high clay content. The addition of thermoplastic and organoclay to the epoxy system had a synergic effect on fracture toughness, modulus, CTE and barrier properties. Planetary ball‐milled samples gave exfoliated morphology with better thermomechanical properties compared to ultrasonicated samples with intercalated morphology. Copyright © 2010 Society of Chemical Industry  相似文献   
9.
A novel method has been developed for determining soluble and insoluble forms of oxalate in pulp and paper samples by ion chromatography. Methanesulphonic acid is used to dissolve insoluble oxalate, and total oxalate is then determined by ion chromatography with suppressed conductivity detection. Soluble oxalate is determined directly by ion chromatography, without prior chemical treatment. Insoluble oxalate is obtained by difference. The method was applied to samples of pulp, process liquors, filtrates, and scale deposits from kraft mills. In kraft mills, considerably higher levels of oxalate were found in the Eop samples compared to those in the brownstock and D0 samples. In both brownstock and Eop samples, oxalate was mainly present in soluble form, whereas the D0-stage contained relatively higher levels of insoluble oxalate.  相似文献   
10.
Experiments were conducted in the laboratory, greenhouse and on farmers’ fields to determine, the potassium (K) supplying capacity of some soils in Ogun State, Nigeria, using equilibrium parameters as measured by quantity, intensity and activity indices. The result showed that the potassium status of the soils varied widely. Total K varied from 14.2 to 104 cmol kg−1 in the green house soils and 46.05 to 89.1 cmol kg−1 in the field soils. On the average, exchangeable and solution K constituted 0.39 and 0.09% of the total K, respectively in the greenhouse soils. The potential buffer capacity (PBC), which measures the ability of the soil to maintain the intensity of K in the soil solution, varied from 12.24 to 39.25 (ML−1/2). About 50% of the soils studied in the green house and in the field have high PBC indicating slow release of K to the soil solution. The specifically bonded K which constituted the bulk of the labile K (KL) that is immediately available is generally low. It ranged from 0.10 to 0.29 cmol kg−1 with a mean of 0.18 cmol kg−1 in the greenhouse soils, and mean of 0.16 cmol kg−1 in the field soils. These low values accounted for the appreciable responses to K application by soybean in most of the soils studied. The change in Gibb’s free energy (ΔG) values, which measures the intensity of exchangeable K relative to other cations, is moderate in most of the soils. Correlation analysis showed that all the forms of K correlated positively and significantly with soybean dry matter yield at the first cropping harvest. However, soybean K concentration in the first harvest was only positively correlated with available K, exchangeable K, solution K and fixed K (P < 0.01). The clay content of the soil is also positively and significantly correlated with K forms. The prediction equation showed that the soil’s clay content is a major determinant of labile K, equilibrium activity ration (EAR) and the potential buffering capacity. The EAR is also strongly determined by the ECEC and the K saturation (R 2 = 0.990, 0.996, P < 0.01). The critical level of soil labile K, available K and specifically bonded K are 0.21, 0.35, and 0.19 cmol kg−1, respectively. Thus, with the use of available K as the index of K fertility, about 50% of the soils are K deficient. Hence potassium fertilization is necessary for enhanced production of soybean in these sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号