首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   9篇
电工技术   1篇
综合类   2篇
化学工业   55篇
金属工艺   1篇
机械仪表   15篇
建筑科学   3篇
能源动力   4篇
轻工业   28篇
水利工程   1篇
无线电   12篇
一般工业技术   30篇
冶金工业   2篇
自动化技术   24篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   5篇
  2019年   8篇
  2018年   6篇
  2017年   13篇
  2016年   8篇
  2015年   12篇
  2014年   16篇
  2013年   16篇
  2012年   12篇
  2011年   17篇
  2010年   11篇
  2009年   14篇
  2008年   8篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.
Polypropylene (PP) hybrid composites have been produced by compounding two types of mineral fillers, viz., talc and kaolin with PP copolymer using a twin screw extruder. The PP hybrid composite was injection‐molded into dumbbell specimen for tensile, flexural, and impact properties characterizations. MFI and SEM studies were used to characterize the flow and morphological properties of the PP hybrid composites. The result shows that most of the hybrid composites showed a significant decrease in flow, tensile, flexural, and impact properties compared with the single filler‐filled PP composites. However, a hybridization effect was seen for the PPT20K10 hybrid composites, through the synergistic coalescence of positive characteristics from 20 wt % of talc and 10 wt % of kaolin. This hybrid formulation have given an economically advantageous material with the mechanical properties (tensile, flexural, and impact) comparable to those of the talc‐filled PP composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 434–441, 2007  相似文献   
2.
In this study, Artificial Neural Network (ANN) and Simulated Annealing (SA) techniques were integrated labeled as integrated ANN-SA to estimate optimal process parameters in abrasive waterjet (AWJ) machining operation. The considered process parameters include traverse speed, waterjet pressure, standoff distance, abrasive grit size and abrasive flow rate. The quality of the cutting of machined-material is assessed by looking to the roughness average value (Ra). The optimal values of the process parameters are targeted for giving a minimum value of Ra. It was evidence that integrated ANN-SA is capable of giving much lower value of Ra at the recommended optimal process parameters compared to the result of experimental and ANN single-based modeling. The number of iterations for the optimal solutions is also decreased compared to the result of SA single-based optimization.  相似文献   
3.
In this study, two computational approaches, Genetic Algorithm and Simulated Annealing, are applied to search for a set of optimal process parameters value that leads to the minimum value of machining performance. The objectives of the applied techniques are: (1) to estimate the minimum value of the machining performance compared to the machining performance value of the experimental data and regression modeling, (2) to estimate the optimal process parameters values that has to be within the range of the minimum and maximum coded values for process parameters of experimental design that are used for experimental trial and (3) to evaluate the number of iteration generated by the computational approaches that lead to the minimum value of machining performance. Set of the machining process parameters and machining performance considered in this work deal with the real experimental data of the non-conventional machining operation, abrasive waterjet. The results of this study showed that both of the computational approaches managed to estimate the optimal process parameters, leading to the minimum value of machining performance when compared to the result of real experimental data.  相似文献   
4.
Sodium potassium niobate (KNN) is the most promising candidate for lead-free piezoelectric material, owing to its high Curie temperature and piezoelectric coefficients among the non-lead piezoelectric. Numerous studies have been carried out to enhance piezoelectric properties of KNN through composition design. This research studied the effects of yttrium concentrations and lattice site occupancy preference in KNN films. For this research, the yttrium-doped KNN thin films (mol% = 0, 0.1, 0.3, 0.5, 0.7 and 0.9) were fabricated using the sol-gel spin coating technique and had revealed the orthorhombic perovskite structures. Based on the replacement of Y3+ ions for K+/ Na+ ions, it was found that the films doped with 0.1 to 0.5 mol% of yttrium had less lattice strain, while films with more than 0.5 mol% of Y3+ ions had increased strain due to the tendency of Y3+ to occupy the B-site in the perovskite lattice. Furthermore, by analysing the vibrational attributes of octahedron bonding, the dopant occupancy at A-site and B-site lattices could be identified. O-Nb-O bonding was asymmetric and became distorted due to the B-site occupancy of yttrium dopants at high dopant concentrations of >0.5 mol%. Extra conduction electrons had resulted in better resistivity of 2.153× 106 Ω at 0.5 mol%, while higher resistivity was recorded for films prepared with higher concentration of more than 0.5 mol%. The introduction of Y3+ improved the grain distribution of KNN structure. Further investigations indicated that yttrium enhances the surface smoothness of the films. However, at high concentrations (0.9 mol%), the yttrium increases the roughness of the surface. Within the studied range of Y3+ , the film with 0.5 mol% Y3+ represented a relatively desirable improvement in dielectric loss, tan δ and quality factor, Qm.  相似文献   
5.
Uncrosslinked and chemically crosslinked ethylene‐vinyl acetate copolymers (EVAs) with 5–25 volume percentages of zeolite were prepared in a melt‐mixing process and then compression‐molded on a hot‐press machine according to standard test specifications. The mechanical properties measured by tensile test showed a reduction in tensile strength and elongation at break with increasing zeolite content. However, an increasing trend was observed for tensile modulus with addition of zeolite. Experimental results for ultimate stress were compared with those from Pukanszky equation. The experimental data showed a good fit to the Pukanszky model. The improvement in the interfacial interaction for crosslinked composites was also confirmed by this model. Morphological changes of EVA/zeolite composites were analyzed by scanning electron microscopy (SEM). The fractured surface of the composites indicated more complex morphology at higher zeolite loading. The influence of crosslinking induced by 2 wt% of dicumyl peroxide on the properties of EVA/zeolite composites was also investigated. The crosslinked composites showed better tensile properties than the uncrosslinked ones, a result which might be an indication of enhanced interaction between the EVA and zeolite. Density measurements, gel content determinations, and Fourier transform infrared analyses were also performed to evaluate the crosslink content of the composites. The changes in the properties of chemically crosslinked EVA/zeolite composites were observed. Meanwhile, SEM micrographs of the crosslinked EVA/zeolite composites showed better interfacial strength between zeolite and the EVA matrix as compared to that of the uncrosslinked composites. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   
6.
This paper focuses on natural silk/epoxy composite square tubes energy absorption and failure response. The tested specimens were featured by a material combination of different lengths and same numbers of natural silk/epoxy composite layers in form of reinforced woven fabric in thermosetting epoxy resin. Tubes were compressed in INSTRON 5567 with a loading capacity of 30 kN. This research investigates the influence of the wall lengths on the compressive response and also failure mode of the tested tubes are analysed. The load–displacement behaviour of square tubes recorded during the test. Since natural woven silk has been used as textile in centuries but due to rare study of this fabric as reinforcement material for composites, the results of this paper can be considerable. Outcomes from this paper might be helpful to guide the design of crashworthy structures.  相似文献   
7.
The performances of three advanced non-linear controllers are analyzed for the optimal set point tracking of styrene free radical polymerization (FRP) in batch reactors. The three controllers are the artificial neural network-based MPC (NN-MPC), the artificial fuzzy logic controller (FLC) as well as the generic model controller (GMC). A recently developed hybrid model (Hosen et al., 2011a. Asia-Pac. J. Chem. Eng. 6(2), 274) is utilized in the control study to design and tune the proposed controllers. The optimal minimum temperature profiles are determined using the Hamiltonian maximum principle. Different types of disturbances are introduced and applied to examine the stability of controller performance. The experimental studies revealed that the performance of the NN-MPC is superior to that of FLC and GMC.  相似文献   
8.
Journal of Inorganic and Organometallic Polymers and Materials - Copper oxide doped TeO2–B2O3 glass system with empirical formula;...  相似文献   
9.
Packet scheduling is a vital component to support different classes of service in all-packet networks. In classical queuing systems, the waiting-time performance of non-first in first out buffer scheduling systems could be predicted through the use of analysis. However, all-packet networks feature traffic patterns that do not conform to classical Poisson-like processes, and this greatly complicates the evaluation of their performance. Our novel approach to this problem is through a hybrid combination of analysis and simulation. The authors derive a combinatorial algorithm, using the generalised ballot theorem, which predicts waiting times for low-priority traffic. When this algorithm is combined with prior work on traffic aggregation, the authors achieve a significant reduction in the state space associated with the buffer under study. To numerically test this algorithm, the authors demonstrate its use in simulation, where state space and event count reduction is a fundamental requirement to ensure experiments complete in a timely fashion. Numerical results from these simulations show a very significant reduction in the number of events processed combined with improved state coverage. This is achieved while maintaining a highly accurate representation of packet delays compared with a conventional approach.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号