首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
化学工业   5篇
无线电   3篇
一般工业技术   10篇
冶金工业   3篇
自动化技术   2篇
  2023年   5篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
In this paper, the transient growth of a spherical micro-void under remote thermal load in an infinite medium is investigated. After developing the governing equations in the problem domain, the coupled nonlinear set of equations is solved through a numerical scheme. It is shown that a small cavity can grow rapidly as the temperature increases in a remote distance and may damage the material containing preexisting micro-voids. Conducting a transient thermal analysis simultaneously with a structural one reveals that the material may experience a peak in the radial stress distribution, which is five times larger compared to the steady-state one, and shows the importance of employing a time-dependent approach in this problem. Furthermore, utilizing a sensible yield criterion, i.e., the modified Zerilli–Armstrong model, discloses that there is a large discrepancy in the results assuming perfectly plastic constitutive model. It is verified that the obtained results do not violate the proportional loading conditions that is the basis for development of the governing formulation in this work. The monotonic alteration of the plastic strain components versus time proves that we do not encounter any elastic unloading during the void growth, which is a basic assumption in the present work. Some numerical examples are also presented to investigate the features of the presented model.  相似文献   
2.
Shabani  Mohsen Ostad  Baghani  Amir  Khorram  Ali  Heydari  Fatemeh 《SILICON》2020,12(12):2977-2987
Silicon - Magnetic stirring is considered to be the most useful stirring method in semi-solid casting processes which doesn’t have the restrictions of the mechanical stirring. In this...  相似文献   
3.
In this research, polyvinyl chloride (PVC) with excellent shape-memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab-made filament from PVC granules is introduced. Macro- and microstructural features of 3D printed PVC are investigated by means of wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape-memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (Tg −45 °C), warm (Tg −15 °C), and hot (Tg +15 °C) and two load holding times of 0 s, and 600 s under three-point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape-memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state-of-the-art shape-memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape-memory PVC-based structures.  相似文献   
4.
Baghani  Mina  Mohammadi  Abbas  Majidi  Mahdi 《Wireless Networks》2019,25(2):533-543
Wireless Networks - Single carrier-frequency division multiple access (SC-FDMA) is a multiple access technique in broadband wireless networks which has been adapted by 3GPP for uplink transmission...  相似文献   
5.
International Journal of Mechanics and Materials in Design - In this paper, employing a new numerical framework, a 2D investigation is conducted on the effect of fiber-matrix contact/debonding on...  相似文献   
6.
This paper describes a new ultrasound-based system for high-frame-rate measurement of periodic motion in 2-D for tissue elasticity imaging. Similarly to conventional 2-D flow vector imaging, the system acquires the RF signals from the region of interest at multiple steering angles. A custom sector subdivision technique is used to increase the temporal resolution while keeping the total acquisition time within the range suitable for real-time applications. Within each sector, 1-D motion is estimated along the beam direction. The intra- and inter-sector delays are compensated using our recently introduced delay compensation algorithm. In-plane 2-D motion vectors are then reconstructed from these delay-compensated 1-D motions. We show that Young's modulus images can be reconstructed from these 2-D motion vectors using local inversion algorithms. The performance of the system is validated quantitatively using a commercial flow phantom and a commercial elasticity phantom. At the frame rate of 1667 Hz, the estimated flow velocities with the system are in agreement with the velocity measured with a pulsed-wave Doppler imaging mode of a commercial ultrasound machine with manual angle correction. At the frame rate of 1250 Hz, phantom Young's moduli of 29, 6, and 54 kPa for the background, the soft inclusion, and the hard inclusion, are estimated to be 30, 11, and 53 kPa, respectively.  相似文献   
7.
Wireless Networks - Generalized frequency division multiplexing (GFDM) is a flexible non-orthogonal waveform candidate for 5G which can offer some advantages such as low out-of-band emission and...  相似文献   
8.
In this paper, strain gradient elasticity formulation for analysis of FG (functionally graded) micro-cylinders is presented. The material properties are assumed to obey a power law in radial direction. The governing differential equation is derived as a fourth order ODE. A power series solution for stresses and displacements in FG micro-cylinders subjected to internal and external pressures is obtained. Numerical examples are presented to study the effect of the characteristic length parameter and FG power index on the displacement field and stress distribution in FG cylinders. It is observed that the characteristic length parameter has a considerable effect on the stress distribution of FG micro-cylinders. Also, increasing material length parameter leads to decrease of the maximum radial and tangential stresses in the cylinder. Furthermore, it is shown that the FG power index has a significant effect on the maximum radial and tangential stresses.  相似文献   
9.
In this paper, a novel approach to the problem of elasticity reconstruction is introduced. In this approach, the solution of the wave equation is expanded as a sum of waves travelling in different directions sharing a common wave number. In particular, the solutions for the scalar and vector potentials which are related to the dilatational and shear components of the displacement respectively are expanded as sums of travelling waves. This solution is then used as a model and fitted to the measured displacements. The value of the shear wave number which yields the best fit is then used to find the elasticity at each spatial point. The main advantage of this method over direct inversion methods is that, instead of taking the derivatives of noisy measurement data, the derivatives are taken on the analytical model. This improves the results of the inversion. The dilatational and shear components of the displacement can also be computed as a byproduct of the method, without taking any derivatives. Experimental results show the effectiveness of this technique in magnetic resonance elastography. Comparisons are made with other state-of-the-art techniques.  相似文献   
10.
To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号