首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  国内免费   1篇
化学工业   6篇
金属工艺   1篇
建筑科学   1篇
能源动力   1篇
轻工业   1篇
无线电   4篇
一般工业技术   2篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
排序方式: 共有17条查询结果,搜索用时 16 毫秒
1.
Al 5083/10 wt% SiC p nano composites have been synthesized by means of high energy ball milling followed by spark plasma sintering (SPS). Nano composites produced via this method exhibited near-theoretical density while retaining the nano-grained features. X-ray diffraction (XRD) analysis indicated that the crystalline size of the ball milled Al 5083 matrix was observed to be ~25 nm and it was coarsened up to ~30 nm after SPS. Nano indentation results of nano composites demonstrated a high hardness of ~280 HV with an elastic modulus of 126 GPa. Wear and friction characteristics with addition of SiC p reinforcement exhibited significant improvement in terms of coefficient of friction and specific wear rate to that of nano structured Al 5083 alloy. The reduction in specific wear rate in the nanocomposite was mainly due to the change of wear mechanism from adhesive to abrasive wear with the addition of SiC p which resulted in high hardness associated with nano-grained microstructure.  相似文献   
2.
Abstract

The detonation of high explosive (HE) material generates a cloud containing a high concentration of detonation products in the form of aerosol particles and gases. Modeling and simulation of aerosol metrics in an explosive cloud is a complex problem as it involves various processes such as chemical reaction, nucleation, volume expansion, and coagulation. Several models have been developed to study the atmospheric dispersion of these detonation products, but very few or no model is available to study the evolution of aerosol metrics at the early stage. In this work, we present a numerical model to simulate the temporal evolution of aerosol metrics in an expanding cloud by coupling transient thermodynamic properties with important microphysical processes. To illustrate the application, the numerical model is applied to a typical HE, and the aerosol particle properties such as size distribution, number concentration, and average size are estimated from the numerical results. These results will provide the essential input conditions for atmospheric dispersion models to estimate the atmospheric concentration and deposition of aerosol particles.

Copyright © 2020 American Association for Aerosol Research  相似文献   
3.
BaTiO3 and BaSnO3 samples doped with Eu3+ ions were prepared using glycine‐nitrate gel combustion method. Relative intensities and line shapes of magnetic dipole allowed 5D07F1 and electric dipole allowed 5D07F2 transitions of Eu3+ from the hosts, BaTiO3 and BaSnO3, are significantly different. Based on detailed structural investigations, it is confirmed that synthesizedBaTiO3 sample is tetragonal with no center of symmetry around Ba2+ ions. Unlike this BaSnO3 is cubic with centrosymmetric Ba2+ site. From X‐ray diffraction and experimentally obtained Judd–Ofelt parameters (Ω2 and Ω4 values), it is confirmed that in BaTiO3 there is a decrease in the average Ba–O and Ba–Ba distances compared with that in BaSnO3. This leads to higher Eu–O bond polarizability and adds to the distortion in its environment around Eu3+ in BaTiO3:Eu compared with BaSnO3:Eu. This is responsible for the observed difference in the luminescence properties.  相似文献   
4.
We have presented a comparison between steady and unsteady magnetohydrodynamic boundary layer flow, heat transfer features of Au–kerosene‐based nanoliquid over a stretching surface by taking variable viscosity, variable thermal conductivity, and slip boundary conditions in this study. Appropriate similarity translations are engaged to reduce nonlinear partial differential equations into a set of ordinary differential equations. These equations along with boundary conditions are elucidated numerically by finite‐element technique. Influence of several pertinent parameters on velocity, temperature, and concentration scatterings, in addition to that, the values of Nusselt number, skin‐friction coefficient, and Sherwood number are scrutinized in detail and the outcomes are exhibited through plots and tables. It is perceived that the values of Nusselt number, skin‐friction coefficient, and Sherwood number intensify in both steady–unsteady cases as the values of volume fraction parameter ( ? ) rise.  相似文献   
5.
Goswami  Chandramani  Bhat  I. K.  Bathula  Sivaiah  Singh  Tej  Patnaik  Amar 《SILICON》2019,11(1):39-49
Silicon - In the present study, applicability of ceramic composites as ceramic-on-ceramic hip prostheses is explored. Hence, ceramic composites containing zirconium oxide, silicon nitride, chromium...  相似文献   
6.
In the ongoing COVID-19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus-laden droplets (termed as “virusol”) (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive “Falling-to-Mixing-Plate-out” model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1-D and 3-D problems for non-evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<104/ml) to about 1100–1250 s at high viral loads (>1011/ml). The implications are discussed.  相似文献   
7.
8.
Wireless Personal Communications - For last few years, the usage of bandwidth is being increased rapidly due to the growth of advanced applications and services. Therefore, it is required to depend...  相似文献   
9.
In recent years, visible-light-driven metal–semiconductor nanocomposites have emerged as a suitable material for the decomposition of various water and air pollutants. In this work, a novel plasmonic Au nanoparticle (NP)/SnO2 quantum dot (SQD) nanocomposite photocatalysts were prepared via a one-step solvothermal technique. The as-prepared plasmonic photocatalysts were characterized by various techniques, and the results established the formation of Au/SQD nanocomposites. The photocatalytic activity of the as-prepared plasmonic Au/SQD nanocomposites was examined by the degradation of Rhodamine B (RhB) at room temperature under visible light, and the Au/SQD photocatalyst, prepared using 1.0?g of tin chloride, exhibited a higher rate constant of RhB degradation than pristine SQDs. This exceptional improvement in catalytic performance under visible light is ascribed to a shift of the band gap from the ultraviolet to the visible region. The surface plasmon resonance effect of Au NPs and the synergistic coupling of the metal and the semiconductor QDs also played a vital role in enhancing the catalytic performance. The process of the photocatalytic degradation of RhB by the Au/SQD nanocomposites under visible light is described.  相似文献   
10.
Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss ~ 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss ~ 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness (Ra = 6.53 µm) compared to the sample sintered at 1500 °C (Ra = 0.66 µm) corroborating the abrasion wear test results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号