首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   25篇
  国内免费   1篇
电工技术   6篇
化学工业   108篇
金属工艺   12篇
机械仪表   25篇
建筑科学   16篇
矿业工程   4篇
能源动力   16篇
轻工业   43篇
水利工程   5篇
石油天然气   7篇
无线电   33篇
一般工业技术   82篇
冶金工业   29篇
原子能技术   7篇
自动化技术   87篇
  2024年   1篇
  2023年   7篇
  2022年   14篇
  2021年   26篇
  2020年   25篇
  2019年   33篇
  2018年   35篇
  2017年   31篇
  2016年   32篇
  2015年   25篇
  2014年   25篇
  2013年   40篇
  2012年   26篇
  2011年   19篇
  2010年   27篇
  2009年   22篇
  2008年   12篇
  2007年   9篇
  2006年   11篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1981年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有480条查询结果,搜索用时 15 毫秒
1.
Journal of Materials Science - Chitosan is one of the natural cationic polymers with unique properties such as non-toxicity, biodegradability, biocompatibility, environmentally friendly that has...  相似文献   
2.
3.
Pressure-assisted infiltration was used to synthesize SiC/Al 6061 composites containing high weight percentages of SiC. A combination of PEG and glass water was used to fabricate SiC preforms and the effect of the presence of glass water on the microstructure and mechanical properties of the preforms was evaluated by performing compression tests on the preforms. Also, the compressive strength and the hardness of the SiC/Al composites were investigated. The results revealed that the glass water improved the compressive strength of the preforms by about five times. The microstructural characterization of the composites showed that the penetration of the aluminum melt into the preforms was completed and almost no porosity could be seen in the microstructures of the composites. Moreover, the composite containing 75 wt% SiC exhibited the highest compressive strength as well as the maximum hardness. The results of the wear tests showed that increasing the SiC content reduces the wear rate so that the Al-75 wt% SiC composite has a lower wear rate and a lower coefficient of friction than those of Al-67 wt% SiC composite. This indicated higher wear resistance in these composites than the Al alloy due to the formation of a tribological layer on the surface of the composites.  相似文献   
4.
Nutmeg (Myristica fragrans) seed was subjected to the hydro-distillation method to extract its essential oil (NEO). Its main constituents were α-pinene (20.16%), sabinene (14.45%), and β-pinene (13.26%) with great antimicrobial and antioxidant actions. A novel edible coating was then fabricated based on the sage seed mucilage (SSM) and NEO, to ameliorate the quality and shelf-life of beef slices. The NEO-loaded SSM coating was able to significantly decrease the population of total viable count, Escherichia coli, Staphylococcus aureus, psychrotrophic bacteria, and fungi. Moreover, lipid oxidation of beef slices was remarkably suppressed upon the application of bioactive NEO-loaded SSM edible coating, as compared with the control by Day 6. The coated beef sample, especially NEO-rich SSM coated ones perceived a higher consumer acceptance and firmness than the SSM coated and noncoated samples. The SSM edible coating containing NEO could therefore have the potential to control the growth of pathogenic microorganisms and lipid oxidation, and to improve the color stability and sensory properties of meat and meat products.  相似文献   
5.
We have demonstrated an approach for fabricating a photonic filter with second-order response function. The filter consists of two germania-doped silica microtoroidal or microspherical resonators cascaded in series. We use ultraviolet irradiation to tune the mode of one microcavity to bring it close to the mode of the second microcavity. This approach produces a filter function with much sharper rolloff than can be obtained with the individual microresonators.  相似文献   
6.
7.

A hybrid analytical-intelligent approach is proposed for fuzzy reliability analysis of the composite beams reinforced by zinc oxide (ZnO) nanoparticle. The fuzzy reliability index corresponding to buckling failure mode of nanocomposite beam under thickness-direction external voltage is computed based on three-levels: (1) fuzzy analysis, (2) reliability analysis and (3) analytical buckling analysis. In fuzzy analysis level, an improved gravitational search algorithm has been applied to determine uncertainty interval for membership levels of reliability index. The adaptive formulation with a dynamical self-adjusting process is used for reliability analysis level based on conjugate first-order reliability method (FORM). The self-adjusting term in conjugate sensitivity vector is used to satisfy the sufficient descent condition for controlling instability of FORM formula while the proposed conjugate scalar factor is computed less than the original conjugate FORM, thus it may be provided with the efficient results for the convex problem. The new and previous sensitivity vectors obtained by conjugate and steepest descent vectors dynamically adjusted the proposed conjugate factor. In the buckling analysis level, an exponential theory in conjunction with the method of energy is utilized. Fuzzy random variables including applied voltage, the volume fraction of ZnO, thickness of beam, spring constant and shear constant of the foundation are considered in studied nanocomposite beam. Survey results indicated that the proposed method can provide stable and acceptable fuzzy membership functions for parametric study. Moreover, the ratio of length to thickness and spring constant of foundation are the more sensitive parameters which affect fuzzy reliability index significantly.

  相似文献   
8.
The Isogeometric Analysis (IA) method is applied for structural topology optimization instead of finite elements. For this purpose, a control point based Solid Isotropic Material with Penalization (SIMP) method is employed and the material density is considered as a continuous function throughout the design domain and approximated by the Non-Uniform Rational B-Spline (NURBS) basis functions. To prevent the formation of layouts with porous media, a penalization technique similar to the SIMP method is used. For optimization an optimality criteria is derived and implemented. A few examples are presented to demonstrate the performance of the method. It is shown that, dissimilar to the element based SIMP topology optimization, the resulted layouts by this method are independent of the number of the discretizing control points and checkerboard free.  相似文献   
9.
Silicon - In this study, a new magnetic ZrFe2O4@SiO2-TCPP nanocatalyst with high efficiency was used for the oxidation of cyclohexane to cyclohexanone (Ke) and cyclohexanol (Al). The mesoporous...  相似文献   
10.
ABSTRACT

Cadmium as a highly toxic metal is released into the environment through paper production, metal processing, phosphate fertilizers, insecticides, and treatment of wastewater. Cadmium also inhibits the body activities and is very toxic for kidney and other organisms. In the current study, zinc-based metal–organic framework, zeolitic imidazolate framework (ZIF)-8, was synthesized and modified by dimethylethylenediamine (ZIF-8-mmen) for the removal of cadmium. To optimize the experiments, response surface methodology was applied with three variables including pH, adsorbent dosage, and contact time using central composite design. The optimum conditions for pH, dosage, and time were 2, 0.1 g, and 89 min, respectively, with removal efficiency of 85.38%. The Langmuir isotherm (q m = 1000 mg/g) indicates the monolayer adsorption. The kinetic studies reveal that the Lagergren model was predominant and cadmium was not chemisorbed. Thermodynamic parameters show spontaneous, endothermic, and physisorption processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号