首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学工业   6篇
建筑科学   2篇
能源动力   3篇
轻工业   1篇
一般工业技术   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2010年   1篇
  2008年   4篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Solar/UV-induced photocatalytic degradation of three commercial textile dyes.   总被引:12,自引:0,他引:12  
The photocatalytic degradation of three commercial textile dyes with different structure has been investigated using TiO(2) (Degussa P25) photocatalyst in aqueous solution under solar irradiation. Experiments were conducted to optimise various parameters viz. amount of catalyst, concentration of dye, pH and solar light intensity. Degradation of all the dyes were examined by using chemical oxygen demand (COD) method. The degradation efficiency of the three dyes is as follows: Reactive Yellow 17(RY17) > Reactive Red 2(RR2) > Reactive Blue 4 (RB4), respectively. The experimental results indicate that TiO(2) (Degussa P25) is the best catalyst in comparison with other commercial photocatalysts such as, TiO(2) (Merck), ZnO, ZrO(2), WO(3) and CdS. Though the UV irradiation can efficiently degrade the dyes, naturally abundant solar irradiation is also very effective in the mineralisation of dyes. The comparison between thin-film coating and aqueous slurry method reveals that slurry method is more efficient than coating but the problems of leaching and the requirement of separation can be avoided by using coating technique. These observations indicate that all the three dyes could be degraded completely at different time intervals. Hence, it may be a viable technique for the safe disposal of textile wastewater into the water streams.  相似文献   
2.
In situ ozonation has been proposed as a method to remediate soils contaminated with organic pollutants. Soil column experiments were performed on eight different soils in order to investigate the effects of soil properties, such as soil organic matter (SOM) and soil texture on the survival and regrowth of indigenous microorganisms after in situ ozonation. Indigenous microorganisms were found to be very sensitive to ozone in the soil column experiments. The microbial fatality revealed a linear relationship with the SOM content in the range of 1.72–2.42% of SOM content, whereas water content was poorly correlated. Four weeks of incubation of ozone-treated soil samples allowed for the regrowth of indigenous microorganisms with inverse relation to ozonation time. The regrowth was also significantly influenced by the SOM content in the same soil texture. Oxidation and removal rate of hexadecane was affected by particle size distribution. Especially, sand exhibited the highest oxidation rate of hexadecane, which resulted from having the lowest SOM content, water content, and surface area with respect to the other samples. The soil samples ozonated for 90–180 min were determined to exhibit the lowest concentration of hexadecane, with the exception of sand, after 4 weeks of incubation. This study provided insight into the influence of SOM and soil texture on indigenous microbial potential to degrade hexadecane in integrated ozonation and biodegradation.  相似文献   
3.
A novel photocatalyst comprises of ZrO2TiO2 immobilized on reduced graphene oxide (rGO) – a ternary heterojunction (ZrO2TiO2/rGO) was synthesized by using facile chemical method. The nanocomposite was prepared with a strategy to achieve better utilization of excitons for catalytic reactions by channelizing from metal oxide surfaces to rGO support. TEM and XRD analysis results revealed the heterojunction formed between ZrO2 and single crystalline anatase TiO2. The mesoporous structure of ZrO2TiO2 was confirmed using BET analysis. The red shift in absorption edge position of ZrO2TiO2/rGO photocatalyst was characterized by using diffuse reflectance UV–Visible spectra. ZrO2TiO2/rGO showed greater interfacial charge transfer efficiency than ZrO2TiO2, which was evidenced by well suppressed PL intensity and high photocurrent of ZrO2TiO2/rGO. The suitable band gap of 1.0 wt% ZrO2TiO2/rGO facilitated the utilization of solar light in a wide range by responding to the light of energy equal to as well as greater than 2.95 eV by the additional formation of excited high-energy electrons (HEEs). ZrO2TiO2/rGO showed the enhanced H2 production than TiO2/rGO, which revealed the role of ZrO2 for the effective charge separation at the heterojunction and the solar light response. The optimum loading of 1.0 wt% of ZrO2 and rGO on TiO2 showed the highest photocatalytic performance (7773 μmolh?1gcat?1) for hydrogen (H2) production under direct solar light irradiation.  相似文献   
4.
A new route for the preparation of nanocrystalline TiO2 particles based on the pH swing method assisted by ultrasonic irradiation in the presence of a surfactant (Pluronic P-123) has been successfully achieved. The prepared TiO2 catalysts were calcined from 400 to 800 °C and characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infra-red spectroscopy (FTIR), gas adsorption measurements (BET) and thermogravimetirc measurements (TAG/DTA) analyses. Characterization results revealed that the enhancement in the particle size of TiO2 by the pH swing method could be controlled by combining the pH swing with ultrasonic irradiation. Increasing the calcination temperatures led to an increase in both the particle and pore size, whereas the surface area and pore volume gradually decreased. A synergistic effect was observed in the combined process of pH swing with ultrasonication, yielding small TiO2 particles as well as high surface area, pore volume, pore diameter, and crystalline anatase phase. The activity of the catalysts was investigated for the oxidation of 4-chlorophenol (4-CP). TiO2 prepared with 15 times pH swing and calcined at 700 °C was found to show the highest rate for the oxidative degradation of 4-CP when compared to the TiO2 sample prepared with just 1 time pH swing and to the commercial P-25 TiO2 Degussa photocatalyst. Thus, a novel approach in controlling the various physico-chemical parameters of TiO2 nanoparticles was developed.  相似文献   
5.
Neppolian B  Jung H  Choi H  Lee JH  Kang JW 《Water research》2002,36(19):4699-4708
The sonolytic degradation of methyl tert-butyl ether (MTBE) has been investigated at ultrasonic frequency of 20 kHz. The observed pseudo-first-order rate constant decreased from 1.25 x 10(-4) to 5.32 x 10(-5) s(-1) as the concentration of MTBE increased from 2.84 x 10(-2) to 2.84 x 10(-1) mM. The rate of degradation of MTBE increased with the increase of the power density of ultrasonicator and also with the rise in reactor system temperature. In the presence of oxidising agent, potassium persulphate, the sonolytic rate of degradation of MTBE was accelerated substantially. Tert-butyl formate (TBF) and acetone were found to be the major intermediates of the degradation of MTBE. It is found that the ultrasound/Fe2+/H2O2 method is promising process for the degradation of MTBE. More than 95% degradation of MTBE (2.84 x 10(-2) mM) along with its intermediate products has been achieved during the coupled ultrasound/Fe2+/ H2O2 method. Hence, the coupled ultrasound/Fe2+/H2O2 may be a viable method for the degradation MTBE within a short period of time than the ultrasound irradiation process only. A kinetic model, based on the initial rates of degradation of MTBE and TBF, provides a good agreement with the experimental results.  相似文献   
6.
The application of metal ion-implantation method has been made to improve the electronic properties of the TiO2 photocatalyst to realize the utilization of visible light. The photocatalytic properties of these unique TiO2 photocatalysts for the purification of water have been investigated. By the metal ion-implantation method, metal ions (Fe+, Mn+, V+, etc.) are accelerated enough to have the high kinetic energy (150 keV) and can be implanted into the bulk of TiO2. TiO2 photocatalysts which can absorb visible light and work as a photocatalyst efficiently under visible light irradiation were successfully prepared using this advanced technique. The UV-Vis absorption spectra of these metal ion-implanted TiO2 photocatalysts were found to shift toward visible light regions depending on the amount and the kind of metal ions implanted. They were found to exhibit an effective photocatalytic reactivity for the liquid-phase degradation of 2-propanol diluted in water at 295 K under visible light (λ>450 nm) irradiation. The investigation using XAFS analysis suggested that the substitution of Ti ions in TiO2 lattice with implanted metal ions is important to modify TiO2 to be able to adsorb visible light.  相似文献   
7.
The photocatalytic activity of commercial ZnO powder has been investigated and compared with that of Degussa P25 TiO2. Laboratory experiments with acid brown 14 as the model pollutant have been carried out to evaluate the performance of both ZnO and TiO2 catalysts. Solar light was used as the energy source for the photocatalytic experiments. These catalysts were examined for surface area, particle size and crystallinity. The effect of initial dye concentration, catalyst loading, irradiation time, pH, adsorption of acid brown 14 on ZnO and TiO2, intensity of light and comparison of photocatalytic activity with different commercial catalysts were studied. The progress of photocatalytic degradation of the acid brown 14 has been observed by monitoring the change in substrate concentration of the model compound employing HPLC and measuring the absorbance in UV–Visible spectrophotometer for decolourisation. The photodegradation rate was determined for each experiment and the highest values were observed for ZnO suggesting that it absorbs large fraction of the solar spectrum and absorption of more light quanta than TiO2. The complete mineralisation was confirmed by total organic carbon (TOC) analysis, COD measurement and estimation of the formation of inorganic ions such as NH4+, NO3, Cl and SO42−.  相似文献   
8.
The sonochemical oxidation of As(III) in the presence of peroxydisulfate ion (PDS) has been investigated. Sulfate anion radicals and OH radicals produced during acoustic cavitation readily oxidized As(III) to As(V) in an aqueous environment. The rate of oxidation of As(III) was remarkably high (~10 times) with respect to the concentration of PDS. The As(III) oxidation was found to be independent of the initial pH of the solution in the range 3–8. It was relatively low at pH above 8, however, this could be circumvented by increasing the concentration of PDS. The presence of oxygen in solution played a significant role in the rate of oxidation of As(III). Around 40% oxidation of As(III) was observed in the absence of oxygen compared to 80% oxidation in the presence of dissolved oxygen (10 mg/L) over a sonication time of 5 min. The addition of humic acid (HA) retarded the oxidation rate of As(III), but the effect could be offset by using larger amounts of PDS. The effects of ultrasound intensity, and frequency on the rate of the oxidation of As(III) were also studied. The rate of the oxidation of As(III) was not significantly dependent on the acoustic power applied, for the concentrations of As(III) used in this study. At an ultrasound frequency of 211 kHz, the rate of oxidation of As(III) was lower than that observed at 20 kHz. It is concluded that the sonochemical treatment of As(III) solutions in the presence of PDS is a simple and viable technique for the oxidation of As(III) to As(V).  相似文献   
9.
Reduced graphene oxide (rGO) supported g-C3N4-TiO2 ternary hybrid layered photocatalyst was prepared via ultrasound assisted simple wet impregnation method with different mass ratios of g-C3N4 to TiO2. The synthesized composite was investigated by various characterization techniques, such as XRD, FTIR, Raman Spectra, FE-SEM, HR-TEM, UV vis DRS Spectra, XPS Spectra and PL Spectra. The optical band gap of g-C3N4-TiO2/rGO nanocomposite was found to be red shifted to 2.56 eV from 2.70 eV for bare g-C3N4. It was found that g-C3N4 and TiO2 in a mass ratio of 70:30 in the g-C3N4-TiO2/rGO nanocomposite, exhibits the highest hydrogen production activity of 23,143 μmol g?1h?1 through photocatalytic water splitting. The observed hydrogen production rate from glycerol-water mixture using g-C3N4-TiO2/rGO was found to be 78 and 2.5 times higher than g-C3N4 (296 μmol g?1 h?1) and TiO2 (11,954 μmol g?1 h?1), respectively. A direct contact between TiO2 and rGO in the g-C3N4-TiO2/rGO nanocomposite produces an additional 10,500 μmol g?1h?1 of hydrogen in 4 h of photocatalytic reaction than the direct contact between g-C3N4 and rGO. The enhanced photocatalytic hydrogen production activity of the resultant nanocomposite can be ascribed to the increased visible light absorption and an effective separation of photogenerated electron-hole pairs at the interface of g-C3N4-TiO2/rGO nanocomposite. The effective separation and transportation of photogenerated charge carriers in the presence of rGO sheet was further confirmed by a significant quenching of photoluminescence intensity of the g-C3N4-TiO2/rGO nanocomposite. The photocatalytic hydrogen production rate reported in this work is significantly higher than the previously reported work on g-C3N4 and TiO2 based photocatalysts.  相似文献   
10.
It is necessary to synthesize new material for the advancements of the technology. In this study, new and novel poly(2-anisidine)@zirconium tungstate(P2A/ZrW_2O_8) was synthesized by simple so-gel method. Physicochemical characterization of P2A/ZrW_2O_8 was done by thermogravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray powder diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), ion exchange and simultaneous four probe dc conductivity studies. The conductivity study revealed its highly semiconducting nature, in the range of 10~(-1)–10~(-2) S·cm~(-1). Ion-exchange capabilities of the composite make it applicable for cation-exchange studies. The result of distribution studies(Kd) revealed its selectivity towards Cd~(2+) compared to other metal ions. This property of the composite was utilized for designing Cd~(2+) selective membrane electrode. Several important physical parameters of the ion-selective electrode were determined, such as Nernstian slope(32.32 mV·decade~(-1)), working pH range was 2.0–4.0 and response time was found ~ 17 s.The analytical utility of this wave like composite membrane electrode was as, indicator electrode in various potentiometric titrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号