首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
电工技术   4篇
化学工业   4篇
一般工业技术   4篇
  2018年   1篇
  2016年   1篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
A phenomenological approach is proposed describing both nonlinearity and frequency dispersion in dielectric and piezoelectric properties of lead zirconate titanate, Pb(Zr,Ti)O3 (PZT), thin films and ceramics. The approach couples the frequency dependent response in form of the power law, 1/ωβ, with the rate-independent nonlinear response described by the Rayleigh law. The main experimental trends are well described by the model.  相似文献   
2.
Abstract

Antiferroelectric compositions, such as PbZrO3, are attractive candidates in charge storage devices and actuator/transducer applications in MEMs technology. Thin films of PbZrO3were deposited on Pt coated Si substrates by a pulsed excimer ablation process. The process of field induced ferroelectric phase switching involves the domain wall reorientation in the polycrystalline thin films. The presence of grain boundaries and various defects in the polycrystalline thin films acts as the pinning sources for the various domain walls. These defects capture the charge carriers in the presence of external applied field and hinders further switching of the dipoles in the domains, thereby increases the response times and threshold voltages for the devices operations. Understanding of the trapping phenomenon in these films is very essential. Using Lampert's theory of space charge limited conduction both shallow and deep trap energies were estimated approximately from charge transport analysis.  相似文献   
3.
Abstract

The dielectric and electrical properties of excimer laser ablated processed paraelectric (Ba0.5, Sr0.5)TiO3, ferroelectric Bi-layered SrBi2(Ta0.5Nb0.5)2O9, and antiferroelectric (PbZrO3) thin films have been investigated. The effect of processing parameters on the microstructure of the films and the functional properties has been presented in detail. Some of the recent studies of stress induced effects, dielectric, hysteresis and ac and dc electrical properties have been highlighted in conjunction with microstructures of the films.  相似文献   
4.
5.
The use of PZT films in sliver-mode high-frequency ultrasonic transducers applications requires thick, dense, and crack-free films with excellent piezoelectric and dielectric properties. In this work, PZT composite solutions were used to deposit PZT films >10 μm in thickness. It was found that the functional properties depend strongly on the mass ratio of PZT sol–gel solution to PZT powder in the composite solution. Both the remanent polarization, P r, and transverse piezoelectric coefficient, e 31, f , increase with increasing proportion of the sol–gel solution in the precursor. Films prepared using a solution-to-powder mass ratio of 0.5 have a remanent polarization of 8 μC/cm2, a dielectric constant of 450 (at 1 kHz), and e 31, f =−2.8 C/m2. Increasing the solution-to-powder mass ratio to 6, the films were found to have remanent polarizations as large as 37 μC/cm2, a dielectric constant of 1250 (at 1 kHz) and e 31, f =−5.8 C/m2.  相似文献   
6.
Ordered arrays of high aspect ratio (>10:1) ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) tube structures were fabricated by vacuum infiltration of macroporous silicon (Si) templates. Improved phase purity was achieved when PZT microtubes were pyrolyzed at 300°C and partially released from the Si template to prevent a chemical reaction between the Pb and the Si during subsequent high-temperature crystallization. The free-standing microtubes were crystallized by rapid thermal annealing at 750°C for 1–3 min. Perovskite phase formation was confirmed by X-ray diffraction and transmission electron microscopy methods. Coaxial structures comprised of metallic LaNiO3, PZT, and Pd layers were also processed to enable future electrical characterization of the ferroelectric microtubes.  相似文献   
7.
Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr(0.52)Ti(0.48)O(3) thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns.  相似文献   
8.
Abstract

Utilization of antiferroelectric thin films was proposed for high charge storage capacitors and transducer applications. The volume changes that are associated with the AFE? FE and FE ? AFE phases are high enough to use them in MEMs device technology. Lead zirconate was the first identified antiferroelectric compound with a reported dielectric phase transition temperature of ~ 230°C. In this article, deposition of lead zirconate thin films by a pulsed excimer laser ablation technique is reported. The antiferroelectric nature of the lead zirconate thin films were confirmed by the presence of double hysteresis loop in polarization vs. applied electric field response as well as double butterfly behavior in capacitance vs. voltage characteristics. The variations in the polarization hysteresis with temperature were elucidated in detail. The switching times between the field induced FE and AFE phases (backward switching) were studied at various applied electric fields.  相似文献   
9.
Thin films of neodymium-modified bismuth titanate Bi3.44Nd0.56Ti3O12 (BNT) were grown on Pt/TiO2/SiO2/Si substrates using chemical solution deposition method. The capacitors made by applying top Au electrodes on BNT films showed significantly improved values of the remanent polarization as compared to that using bismuth titanate Bi4Ti3O12 (BT) films. The 2P r value for the BNT capacitors was determined to be equal to 38 C/cm2 at an applied voltage of 24 V, whereas, for Bi4Ti3O12 (BT) capacitors a value of 20 C/cm2 was measured at the same applied voltage. The maximum piezoelectric and pyroelectric coefficients of 22 pm/V and 112 C/m2 K respectively, were measured for the BNT thin films.  相似文献   
10.
Integration of lead zirconate titanate (PZT) films with temperature‐sensitive substrates (CMOS, polymers) would benefit from growth at substrate temperatures below 400°C. In this work, in situ pulsed‐laser annealing [Rajashekhar et al. (2013) Appl. Phys. Lett., 103 [3] 032908] was used to grow crystalline lead zirconate titanate (PbZr0.52Ti0.48O3) thin films at a substrate temperature of ~370°C on PbZr0.30Ti0.70O3‐buffered platinized silicon substrates. Transmission electron microscopy analysis indicated that the films were well crystallized into columnar grains, but with pores segregated at the grain boundaries. Lateral densification of the grain columns was significantly improved by reducing the partial pressure of oxygen from 120 to 50 mTorr, presumably due to enhanced adatom mobility at the surface accompanying increased bombardment. It was found that varying the fractional annealing duration with respect to the deposition duration produced little effect on lateral grain growth. However, increasing the fractional annealing duration led to shift of 111 PZT X‐ray diffraction peaks to higher 2θ values, suggesting residual in‐plane tensile stresses in the films. Thermal simulations were used to understand the annealing process. Evolution of the film microstructure is described in terms of transient heating from the pulsed laser determining the nucleation events, while the energy of the arriving species dictates grain growth/coarsening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号