首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
化学工业   9篇
能源动力   4篇
无线电   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2.
Molten salts have potential application as an efficient heat transfer medium in a primary and secondary heat exchanger in high temperature next‐generation nuclear power plant. Thermal hydraulic studies are vital for reliable and cost‐effective design of the nuclear power plant. Therefore heat transfer study of molten salts will play a vital role in this area. In this work, an experimental system was designed to study thermal hydraulics of the molten salt system up to 700°C. This work describes the pretest results of the experimental facility for extremely corrosive molten fluoride salts with a simulant thermia‐B as the working fluid. In the present work, the details of the system are discussed and thermal‐hydraulic data for heat transfer fluid thermia‐B has been presented. Experiments were carried out at Reynolds number in the range of 4500 to 40 500 and Prandtl number in the range of 34 to 144. Effect of Reynolds number, melting tank temperature, and heat input to test section on forced convective heat transfer was studied under turbulent conditions. Comparison of the experimental data with different empirical correlations has been presented.  相似文献   
3.

This paper presents a novel approach in designing fractal antennas operating at 2.45 GHz. Mainly focuses on design and simulation of a combination of Koch and Sierpinski fractal antenna with jeans as substrate material with dielectric constant 1.6 up to 2nd iteration. The design of antenna presented here can radiate at 2.45 GHZ, 3.64 GHZ, and 4.06 GHz frequencies with a reflection coefficient less than  ? 10 dB, VSWR between 1 and 2 and enhancement in bandwidth up to 200 MHz. This antenna has been simulated using CADFEKO software, fabricated and tested on VNA and has been observed that there is good conformity between simulation and experimental results. Besides that, Fractal antenna using jeans material as substrate for WiMAX/WSN Application at S and C frequency bands is small in size, flexible, less costly and low profile multiband antenna.

  相似文献   
4.
Biomass gasification is a thermo-chemical process widely accepted as a future technology for syngas production. Numerous types of gasification systems have been proposed and studied in the past. Recent developments have shown that Dual Fluidized Bed (DFB) gasifier are commercially more attractive for production of the hydrogen-rich syngas as compared to others. DFB gasification system is very complex in construction and operation. Hence, a detailed understanding of hydrodynamics in such systems is essential for optimum design and scale-up. Hydrodynamics of DFB gasifier mainly depends on the Solid Circulation Rate (SCR). SCR is governed by riser velocity, gasifier velocity, and loop seal velocities. In present work, Central Composite Rotatable Design (CCRD) based Response Surface Method (RSM) was employed to determine the effect of riser velocity, gasifier velocity, recycle chamber velocity, supply chamber velocity, and vertical supply chamber velocity and their interaction on the SCR. Adequacy of regression model developed from RSM was confirmed using ANOVA analysis. The value of coefficient of determination (R2) of the model was 0.9729, which confirms model represents the experimental results satisfactorily. Riser and recycle chamber velocity were found to be most significant parameters, plays an important role in SCR in DFB gasifier.  相似文献   
5.
In this article, a novel framework for the design of mixed (combined direct and indirect) integration for batch process systems is presented. The framework is based on the concept of pseudo‐direct energy integration (PDEI) which reformulates indirect integration as direct integration using pseudo‐process streams. Two algorithms are presented to achieve energy integration for batch processes operating cyclically (in a campaign mode). The first algorithm targets maximization of energy recovery and overcomes the limitations of some of the existing contributions for design of mixed integrated systems. The second algorithm provides a network reduction methodology to generate a cadre of integrated designs while exploring the trade‐off between capital (number of heat exchangers and storage units) and operating costs (utility consumption). The proposed framework is illustrated using a benchmark example of two hot and two cold streams. © 2017 American Institute of Chemical Engineers AIChE J, 63: 55–67, 2018  相似文献   
6.
The external loop airlift reactor(EL-ALR) is widely used for gas-liquid reactions. It's advantage of good heat and mass transfer rates compared to conventional bubble column reactors. In the case of fermentation application where a medium is highly viscous and coalescing in nature, internal in riser helps in the improvement of the interfacial area as well as in the reduction of liquid-phase back mixing. The computational fluid dynamic(CFD) as a tool is used to design and scale-up of sectionalized external loop airlift reactor. The present work deals with computational fluid dynamics(CFD) techniques and experimental measurement of a gas hold-up, liquid circulation velocity, liquid axial velocity, Sauter mean bubble diameter over a broad range of superficial gas velocity 0.0024≤U_G≤0.0168 m·s~(-1). The correlation has been made for bubble size distribution with specific power consumption for different plate configurations. The effects of an internal on different mass transfer models have been completed to assess their suitability.The predicted local mass transfer coefficient has been found higher in the sectionalized external loop airlift reactor than the conventional EL-ALR.  相似文献   
7.
Several researchers have modeled the heat transfer in a packed bed, heated externally, and determined its effective thermal conductivity ( k eff ). But till date, very few researchers have studied the heat transfer of the pebble bed, where the heat is generated inside the bed; and the effective thermal conductivity of the packed bed with internal heat generation has not yet been reported. In the present work, heat generation inside the bed has been imitated by inductively heating randomly placed steel balls with lithium titanate ( Li 2 TiO 3 ) pebbles. The system has been modeled and validated with experimental results. The k eff of the Li 2 TiO 3 pebble bed is determined for various process conditions. A correlation has been developed to calculate the k eff based on various process parameters such as pebble diameter, air flow rate, and induction temperature. The result presented in this study will be used for the design and scale‐up studies of future fusion reactors.  相似文献   
8.
A critical review of the published literature regarding the computational fluid dynamics (CFD) modelling of single‐phase turbulent flow in stirred tank reactors is presented. In this part of review, CFD simulations of radial flow impellers (mainly disc turbine (DT)) in a fully baffled vessel operating in a turbulent regime have been presented. Simulated results obtained with different impeller modelling approaches (impeller boundary condition, multiple reference frame, computational snap shot and the sliding mesh approaches) and different turbulence models (standard k ? ε model, RNG k ? ε model, the Reynolds stress model (RSM) and large eddy simulation) have been compared with the in‐house laser Doppler anemometry (LDA) experimental data. In addition, recently proposed modifications to the standard k ? ε models were also evaluated. The model predictions (of all the mean velocities, turbulent kinetic energy and its dissipation rate) have been compared with the experimental measurements at various locations in the tank. A discussion is presented to highlight strengths and weaknesses of currently used CFD models. A preliminary analysis of sensitivity of modelling assumptions in the k ? ε models and RSM has been carried out using LES database. The quantitative comparison of exact and modelled turbulence production, transport and dissipation terms has highlighted the reasons behind the partial success of various modifications of standard k ? ε model as well as RSM. The volume integral of predicted energy dissipation rate is compared with the energy input rate. Based on these results, suggestions have been made for the future work in this area.  相似文献   
9.
10.
Analysis of flow pattern and heat transfer in direct contact condensation   总被引:1,自引:0,他引:1  
In direct contact condensation (DCC) phenomenon, whenever steam (vapor) is injected with very high velocity in sub-cooled water, the momentum and the energy of the steam is transferred to the surrounding liquid, leading to generation of flow pattern, turbulent in nature. The turbulent flow pattern enhances the heat transfer coefficient at the interface of steam jet and water (vapor-liquid interface) as well as at the immersed surfaces (solid-liquid interface). The flow and the temperature pattern in DCC system have been measured using hot film anemometer (HFA). The values of heat transfer coefficient at the vapor-liquid and solid-liquid interface were estimated using the CCA module of the HFA. The nozzle diameter (d0) was varied in the range of 1-2 mm and the nozzle upstream pressure in the range of 0.3-0.35 MPa (corresponding velocities in the nozzle were 286-304 m/s). The time series of velocity and temperature at the interface were analyzed to get the rates of surface renewal. A comparison has been presented between the predicted and the experimental values of heat transfer coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号