首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
化学工业   10篇
建筑科学   1篇
轻工业   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
排序方式: 共有12条查询结果,搜索用时 297 毫秒
1.
Phorbol esters (PEs) are important toxic compounds found in Jatropha curcas oil and pressed seeds. These compounds are tumor promoters; thus, their removal prior to further utilization of the pressed seed is important. This work aimed to investigate the solubilization behavior of PEs and Jatropha oil in nonionic [effect of the ethylene oxide number (EON), carbon‐chain length and temperature] and anionic (NaCl addition) surfactant systems. The results reveal that an increase in the EON of the nonionic surfactant molecules, rather than an increase in the carbon‐chain length, enhances PE solubilization. The hydrophile‐lipophile balance (HLB) value was correlated with PE solubilization for nonionic surfactant solutions. The solubilization of PEs decreased slightly with increasing temperature, in contrast to solubilization of the oil. Moreover, the mole fraction of PE solubilized in the micelle decreased with increasing electrolyte concentration in anionic surfactant solutions. The solubilization behavior of PEs in both nonionic and anionic solutions indicates that PE acts more like a polar compound than a nonpolar compound. In addition, the PEs in nonionic micelles are likely located in the palisade region (i.e., between the head group and the first few carbon atoms of the tail), whereas those in anionic micelles are likely near the outer core of the head group. This finding suggests that a nonionic surfactant with a higher EON has a greater potential to extract PE from Jatropha seeds. If an anionic surfactant is combined as co‐surfactant, a small amount of electrolyte should be added to increase PE solubilization.  相似文献   
2.
Laundry detergency of palm oil on a polyester/cotton blend was measured using an anionic extended surfactant/nonionic secondary alcohol surfactant blend under conditions corresponding to ultralow oil/water interfacial tension microemulsion formation. The oil removal for the surfactant blend could exceed 90%, which was greater than that for either component surfactant alone or for a commercial liquid laundry detergent. Presoaking produced better detergency than increasing the number of wash cycles beyond two due to fabric abrasion (leading to a brightness decrease) with an excessive number of wash cycles. Higher oil contact angles and shorter oil droplet detachment times were found to correspond to higher detergency. High speed photography showed that snap-off occurred rather than roll-up for these systems.  相似文献   
3.
Mixtures of anionic and cationic surfactants exhibit synergistic behavior as evidenced by low critical micelle concentrations (CMC) of the mixed system, increased surface activity, and improved detergency performance. The adsorption of a single-head anionic surfactant, sodium dodecyl sulfate (SDS), in mixture with a twin-head cationic surfactant, pentamethyl-octadecyl-1,3-propane diammonium dichloride (PODD), showed synergism of adsorption onto silica when present at a mixing ratio of 1:3 (cationic-rich), and also demonstrated lower surfactant desorption with water flushing of columns packed with the surfactant-modified media. In addition, the proportion of the mixed surfactants in the admicelles moved from the initial ratio of 1:3 towards equimolar after rinsing the surfactant-modified silica absorbent. The retardation of organic solutes passing through columns packed with modified-silica adsorbent increased nominally three fold for silica modified with mixed surfactants versus single surfactants (retardation factors increase from 4.0 to 12.8 for styrene and from 32.1 to 90.2 for ethylcyclohexane for single and mixed surfactants, respectively). Thus, this study demonstrates that mixed surfactant systems more effectively modified the silica surface than single surfactant systems both in terms of enhanced retardation of organic solutes and in terms of reduced surfactant desorption.  相似文献   
4.
Aqueous surfactant-assisted extraction (ASE) has been proposed as an alternative to n-hexane for extraction of vegetable oil; however, the use of inexpensive surfactants such as sodium dodecyl sulfate (SDS) and the effect of ASE on the quality of biodiesel from the oil are not well understood. Therefore, the effects on total oil extraction efficiency of surfactant concentration, extraction time, oilseed to liquid ratio and other parameters were evaluated using ASE with ground canola and SDS in aqueous solution. The highest total oil extraction efficiency was 80 %, and was achieved using 0.02 M SDS at 20 °C, solid–liquid ratio 1:10 (g:mL), 1,000 rpm stirring speed and 45 min contact time. Applying triple extraction with three stages reduced the amount of SDS solution needed by 50 %. The ASE method was scaled up to extract 300 g of ground canola using the best combination of extraction conditions as described above. The extracted oil from the scale-up of the ASE method passed the recommendation for biodiesel feedstock quality with respect to water content, acid value and phosphorous content. Water content, kinematic viscosity, acid value and oxidative stability index of ASE biodiesel were within the ASTM D6751 biodiesel standards.  相似文献   
5.
In previous work, a microemulsion-based formulation approach yielded excellent laundry detergency with hydrophobic oily soils hexadecane and motor oil. In this work, the same approach is used in detergency of triolein, which is a model triglyceride, some of the most difficult oils to be removed from fabric. The linker concept was applied in formulation of the microemulsion system. Three different surfactants were used: (i) dihexyl sulfosuccinate, an ionic surfactant with a moderate hydrophile-lipophile balance (HLB); (ii) secondary alcohol ethoxylate, a lipophilic nonionic surfactant with a very low HLB; and (iii) alkyl diphenyl oxide disulfonate (ADPODS), a hydrophilic anionic surfactant with a very high HLB. The phase behavior and interfacial tension (IFT) of the surfactant systems were determined with different concentrations of ADPODS. The results indicate that as the HLB of the system increases, a higher salinity is required to shift the phase transition from Winsor Type I to Type III to Type II. The three formulations at different salinities were used in detergency experiments to remove triolein from polyester/cotton sample fabric. The results showed that there were two peaks of maximum detergency in the range of salinity from 0.1% to 10% NaCl. The higher the hydrophilicity of the system, the higher the salinity required for maximum detergency. The results of the dynamic IFT and the detergency performance from two rinsing methods lead to the hypothesis that one of these maxima in detergency results from a spreading or wetting effect. The other maximum in detergency is believed to be related to ultralow IFT associated with oil/water middle-phase microemulsion formation. Triolein removal exceeding 80% was attained, validating the microemulsion approach to detergency.  相似文献   
6.
The objective of this study was to investigate the correlation between oily soil removal efficiency and low oil-water interfacial tension (IFT) generated by microemulsion formation. A mixture of sodium dioctyl sulfosuccinate, alkyl diphenyl oxide disulfonate, and sorbitan monooleate was selected as a detergent formulation to evaluate detergency performance for two highly hydrophobic oils: hexadecane and motor oil. The maximum detergency corresponds to formation of a Winsor Type III microemulsion as well as to the supersolubilization region, which is a Winsor Type I microemulsion close to the Winsor Type III region. In addition, the oil removal in the rinse step is almost as high as that in the wash step for both regions. We propose the following mechanism to explain these results: During the wash step, the contact angle of the oil on the fabric surface is progressively increased, resulting in the detachment of the oil droplets. However, owing to the very low IFT, the spreading effect is dominant, thereby causing incomplete oil removal. During the subsequent rinse step, the IFT increases, passing through a composition at which the rollup mechanism causes additional oil removal. These results demonstrate that microemulsion formation and the resulting IFT reduction are important mechanisms in oily soil detergency.  相似文献   
7.
Surfactant solutions are commonly used for the remediation of petroleum-contaminated soil due to their good petroleum removal performance, time-saving capability, and cost effectiveness. However, applying surfactants in excess concentrations could make oil recovery difficult. Moreover, residual surfactants in soil are toxic to microorganisms and plants. Thus, it is crucial to identify a suitable surfactant concentration for soil washing applications. The main objective of this study was to evaluate the effect of soil minerals (quartz and kaolin) and organic matter (OM) on the critical micelle concentration (CMC) of polyethoxylated sorbitan ester surfactants (Tween 20, 40, 60, and 80) and its effect on diesel removal from diesel-contaminated soil by soil washing. The results showed that Tween surfactants with shorter carbon chain lengths required higher CMC for diesel removal from quartz, while those with longer chains needed higher CMC for kaolin cleanup. FTIR results illustrated that oxygenated functional groups of Tween surfactants played an important role in their adsorption on quartz, while alkyl chains of Tween surfactants were responsible for their adsorption on kaolin. At a certain OM concentration, quartz and OM exhibited antagonistic effects, resulting in CMC reduction. In soil washing application, maximum diesel removal could be achieved from kaolin, in the presence of which surfactants exhibited the highest CMC. Based on FTIR results, the adsorbed surfactant could reduce the hydrophobicity of the kaolin surface, thus preventing the re-deposition of detached diesel.  相似文献   
8.
In this study, the impact of water hardness and builder on the phase diagrams of motor oil microemulsions and the detergency of oil removal from a polyester/cotton blend was investigated. Water hardness and builder were found to have insignificant effects on the microemulsion phase diagram with motor oil. A mixed surfactant system of two parts C14–15(PO)3SO4Na, and 98 parts C12–14H25–29O(EO)5H of the total actives at 4% salinity was used to study the effect of water hardness and builders sodium tripolyphosphate (STPP) or ethylenediaminetetraacetic acid (EDTA) on detergency at 30 °C at a total active concentration of 0.3%. This formulation is in the Winsor Type III microemulsion regime. The microemulsion-based formulation resulted in better detergency than a leading commercial liquid laundry detergent at all concentrations up to 0.5% actives. The microemulsion-based formulation showed a plateau in detergency at >80% oil removal above 0.1% actives. The total oil removal decreased with increasing water hardness while the interfacial tension increased. When hard water was used in laundering, the total oil removal improved with increasing concentrations of STPP or EDTA up to stoichiometric levels, with STPP being slightly more effective than EDTA on a molar basis. Even high builder concentration could not improve hard water detergency to that of soft water. A significant fraction of oil removal occurred in the rinse steps vs. the wash step. Increasing water hardness reduced this fractional oil removal in the rinse steps, but it was still over half of total oil removal at 1,000 ppm water hardness.
Sumaeth ChavadejEmail: Email:
  相似文献   
9.
10.
The ultimate objective of the project was to investigate the relationship between microemulsion phase behavior and detergency for oily soils. In this study, surfactant phase behavior was evaluated for hexadecane and motor oil as model oily soils. Producing microemulsions with these oils is particularly challenging because of their large hydrophobic character. To produce the desired phase behavior we included three surfactants with a wide range of hydrophilic/lipophilic character: alkyl diphenyl oxide disulfonate (highly hydrophilic), dioctyl sodium sulfosuccinate (intermediate character), and sorbitan monooleate (highly hydrophobic). This mixed surfactant was able to bridge the hydrophilic/lipophilic gap between the water and the oil phases, producing microemulsions with substantial solubilization and ultralow interfacial tension. The effects of surfactant composition, temperature, and salinity on system performance were investigated. The transition of microemulsion phases could be observed for both systems with hexadecane and motor oil. In addition, the use of surfactant mixtures containing both anionic and nonionic surfactants leads to systems that are robust with respect to temperature compared to single-surfactant systems. Under conditions corresponding to “supersolubilization”, the solubilization parameters and oil/microemulsion interfacial tensions are not substantially worse than at optimal condition for a middle-phase system, so a middle-phase microemulsion is not necessary to attain quite low interfacial tensions. A potential drawback of the formulations developed here is the fairly high salinity (e.g., 5 wt% NaCl) needed to attain optimal middle-phase systems. The correlation between interfacial tension and solubilization follows the trend predicted by the Chun-Huh equation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号