首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41044篇
  免费   4209篇
  国内免费   2647篇
电工技术   3125篇
综合类   3029篇
化学工业   6180篇
金属工艺   2499篇
机械仪表   3012篇
建筑科学   2455篇
矿业工程   1134篇
能源动力   1326篇
轻工业   4233篇
水利工程   1124篇
石油天然气   970篇
武器工业   363篇
无线电   5343篇
一般工业技术   4840篇
冶金工业   1790篇
原子能技术   993篇
自动化技术   5484篇
  2024年   183篇
  2023年   608篇
  2022年   1369篇
  2021年   1947篇
  2020年   1310篇
  2019年   1046篇
  2018年   1166篇
  2017年   1250篇
  2016年   1193篇
  2015年   1692篇
  2014年   2232篇
  2013年   2688篇
  2012年   3273篇
  2011年   3609篇
  2010年   3181篇
  2009年   3094篇
  2008年   2985篇
  2007年   2831篇
  2006年   2525篇
  2005年   1979篇
  2004年   1520篇
  2003年   1107篇
  2002年   1074篇
  2001年   945篇
  2000年   741篇
  1999年   431篇
  1998年   437篇
  1997年   274篇
  1996年   209篇
  1995年   158篇
  1994年   127篇
  1993年   114篇
  1992年   80篇
  1991年   72篇
  1990年   69篇
  1989年   71篇
  1988年   43篇
  1987年   49篇
  1986年   30篇
  1985年   34篇
  1984年   27篇
  1983年   12篇
  1982年   11篇
  1981年   26篇
  1980年   11篇
  1979年   11篇
  1976年   9篇
  1973年   4篇
  1959年   18篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
王晓云  邓伟  张龙  苏鑫  赵世卓 《电信科学》2022,38(11):11-23
大气波导干扰是特定气象条件下发生的时分双工(time-division duplex,TDD)系统内干扰,是TDD移动通信系统大规模组网面临的顽疾。在总结分析大气波导干扰成因和分类等的基础上,对大气波导干扰进行建模和表征,验证了海量干扰源在时域和频域的功率集总特征,并结合大量4G/5G现网实测数据给出了典型条件下内陆波导和海面波导的量化干扰信号传播模型,对于干扰的预测和预防具有重要意义。基于干扰特征,给出了TDD系统预防大气波导干扰的帧结构与组网的4项设计原则,5G现网数据表明干扰控制方案有效,上行干扰下降10 dB以上,相关原则对于6G系统的设计也具有指导意义。  相似文献   
3.
4.
5.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
6.
7.
8.
以驻村扶贫点滇西南L县X村的光棍为研究对象,侧重个体精准性,强调个体因果性的特征,运用小数据分析该村光棍的贫困特征和生成原因,基于马斯洛需求层次理论探索光棍内生动力激发机制.研究表明:农村光棍趋于年轻化,形势严峻;光棍成因受到外部资源匮乏的限制,又受到自身资源缺陷的制约,内外因相互影响,但外因只有通过内因才能发挥作用.探讨通过需求原理激发光棍群体的内生动力,构建长效治理机制,让光棍群体最大限度实现人生价值,提升社会获得感和幸福感.  相似文献   
9.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
10.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号