首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   11篇
水利工程   2篇
一般工业技术   1篇
  2013年   1篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  1990年   1篇
  1986年   2篇
  1985年   4篇
  1982年   1篇
  1981年   2篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
1.
Water occupies a prominent role in global environmental change research as a result of its importance in the efficient functioning of the Earth System, and its role in socioeconomic development. Anthropogenic and natural factors have led to unparalleled changes in the global water system, necessitating integrative, interdisciplinary and holistic research paradigm for water resources management. A meta-analysis of water science projects shows that water research activities fall into HUMAN, ECOLOGY, PROCESS, and CLIMATE-BIOGEOCHEMISTRY clusters. Research themes within the clusters suggest that each research project set priorities along the lines of certain scientific disciplines. Statistical analysis further reveals low level of integration between the research clusters. The persistence of a disciplinary perspective could hinder science from effectively informing policy for sustainable water resources management. A proper integration of knowledge generated from different disciplinary epistemologies through partnership and collaboration of research projects is required for effective water management.  相似文献   
2.
Two modified urea products (urea supergranules [USG] and sulfur-coated urea [SCU]) were compared with conventional urea and ammonium sulfate as sources of nitrogen (N), applied at 58 kg N ha–1 and 116 kg N ha–1, for lowland rice grown in an alkaline soil of low organic matter and light texture (Typic Ustipsamment) having a water percolation rate of 109 mm day–1. The SCU and USG were applied at transplanting, and the whole dose of nitrogen was15N-labeled; the SCU was prepared in the laboratory and was not completely representative of commercial SCU. The SCU was broadcast and incorporated, whereas the USG was point-placed at a depth of 7–8 cm. The urea and ammonium sulfate applications were split: two-thirds was broadcast and incorporated at transplanting, and one-third was broadcast at panicle initiation. All fertilizers except the last one-third of the urea and ammonium sulfate were labeled with15N so that a fertilizer-N balance at flowering and maturity stages of the crop could be constructed and the magnitude of N loss assessed.At all harvests and N rates, rice recovered more15N from SCU than from the other sources. At maturity, the crop recovered 38 to 42% of the15N from SCU and only 23 to 31% of the15N from the conventional fertilizers, urea and ammonium sulfate, whose recovery rates were not significantly different. In contrast, less than 9% of the USG-N was utilized. Fertilizer nitrogen uptake was directly related to the yield response from the different sources. Most of the fertilizer N was taken up by the time the plants were flowering although recovery did increase up to maturity in some treatments.Analysis of the soil plus roots revealed that less than 1% of the added15N was in the mineral form. Between 20 and 30% of the15N applied as urea, SCU, and ammonium sulfate was recovered in the soil plus roots, mainly in the 0–15 cm soil layer. Only 16% of the15N applied as USG was recovered in the soil, and this15N was distributed throughout the soil profile to a depth of 70 cm, which was the lowest depth of sampling.Calculations of the15N balance showed that 46 to 50% of the urea and ammonium sulfate was unaccounted for and considered lost from the system. Only 27 to 38% of the15N applied as SCU was not recovered at maturity, but 78% of the USG application was unaccounted for. The extensive losses and poor plant recovery of USG at this site are discussed in relation to the high percolation rate, which is atypical of many ricegrowing areas.  相似文献   
3.
Asian agriculture has made enormous gains in food production despite rapid population growth and a shortage of land. This paper reviews the role of fertilizer in agricultural production and the results of recent research on fertilizers and plant nutrition in the region. Fertilizer use has contributed greatly to the increase in food production which has occurred largely in the high potential areas. In these areas research has shown that losses reduce the efficiency of broadcast urea and that the use of high analysis fertilizers is inducing sulfur deficiency in some areas. In upland areas, research has highlighted a major problem of boron deficiency in Thailand. Research progress is being made in understanding the magnitude of nitrogen fixation inputs and the role of shrub legumes in upland systems.  相似文献   
4.
A field study was carried out to estimate volatilization and denitrification losses of15N applied as urea of ammonium sulphate to a wet land rice soil. Nitrapyrin (a nitrification inhibitor) was also applied to some treatments along with the two N sources.The N level in floodwater increased rapidly, soon after applying fertilizer N, but decreased to lower values within a few days. At 1 week after applying urea and ammonium sulphate, N losses were 37.6% and 60.6% respectively. The corresponding figures after 4 weeks were 55.7% and 61.9% while with nitrapyrin added the corresponding values were 37.2% and 57.2% after 1 week and 52.7 and 65.0% after 4 weeks respectively indicating that losses due to dentrification are negligible.  相似文献   
5.
Urea is the main form of fertilizer nitrogen applied to wetland rice. As part of an effort to evaluate the efficiency of nitrogen fertilizers, conventional urea and modified urea products such as sulfur-coated urea (SCU), urea supergranules (USG), and sulfur-coated urea supergranules (SCUSG) were compared with ammonium sulfate on an Aquic Tropudalf at the experimental farm of the International Rice Research Institute (IRRI) in the Philippines. The sulfur-coated materials were prepared in the laboratory and were not completely representative of commercial SCU. Two experiments were conducted in the wet season (1978, 1979) and one in the dry season (1979). All fertilizers were labeled with 5% or 10% excess15N so that the fertilizer-N balance at two or three sampling times during the growing season could be constructed and the magnitude of N loss assessed. The SCU, USG, and SCUSG were applied at transplanting, and the whole dose of nitrogen was15N-labeled. The urea and ammonium sulfate applications were split: two-thirds was broadcast and incorporated at transplanting, and one-third was broadcast at panicle initiation; only the initial dose was15N-labeled.Deep-point placement (10 cm) of urea supergranules (USG) between the rice hills consistently provided the highest plant recovery of15N in all experiments and at all harvest times; recoveries ranged from 48% to 75% with an average of approximately 58% at maturity. Among the fertilizers broadcast and incorporated before transplanting, average plant recoveries of15N were only approximately 34% and 26% from urea and ammonium sulfate, respectively. Plant recovery of15N from the broadcast and incorporated SCU (37%) was far inferior to that from USG. Sulfur coating of supergranules did not improve plant recovery over USG alone although sulfur coating delayed the plant uptake of15N from the USG.The15N not accounted for in the plant and soil was presumed lost. Loss of N from urea and ammonium sulfate was high (63%) in the dry season. Coating with sulfur gave a slight improvement, and deep placement of USG and SCUSG greatly reduced the losses. Losses of N were substantially lower in the wet season than in the dry season for broadcast and incorporated urea, SCU, and ammonium sulfate (9%–30%), whereas losses from deep-placed urea remained more or less the same as in the dry season. Net immobilization of15N from the broadcast fertilizers in the wet season ranged from 49% to 53% in the first experiment and from 16% to 32% in the second experiment, presumably because of aquatic weeds and green algae; immobilization was proportionally less at higher rates of fertilizer application. Deep placement reduced the extent of15N immobilization in the soil plus roots to less than 21% in all experiments.  相似文献   
6.
Ammonia volatilization from flooded soils   总被引:1,自引:0,他引:1  
Ammonia volatilization from flooded soils has been studied for over half a century. In reviewing the literature on this subject, it becomes clear that there is no consensus on the importance given to this loss mechanism. In part, the differences of opinion can be explained by the fact that ammonia losses were studied in different environments, but to a great extent it seems due to the wide diversity of techniques used to study this loss mechanism.The many factors that influence ammonia volatilization from flooded soils are chemical, biological, and environmental in nature. These various factors are reviewed in depth and discussed with respect to their implications for measurement techniques and for soil, fertilizer, and water management.The major objective of this paper is to familiarize the reader with the most current developments in thinking about the mechanisms and extent of ammonia loss and hopefully to stimulate meaningful research on ammonia volatilization from flooded soils. Such research should be conducted in a wide range of agroclimatic conditions utilizing measurement techniques that are valid or for which the limitations are clearly understood. A better appreciation for the importance of ammonia volatilization will provide the impetus to research and development in fertilizer technology and management aimed at preventing such losses.  相似文献   
7.
The efficiency of nitrogen (N) fertilizer products and practices currently used on rice is low, and improving this efficiency would be very beneficial to rice-growing countries. The development of new N fertilizers is best achieved by following a logical sequence of testing and evaluation procedures in a variety of settings from the laboratory to the farmer's field. Novel N fertilizers currently at various stages of testing include urea supergranules for deep placement, urea coated with various materials to control the N release rate, mixtures of a urease inhibitor with urea to reduce losses, and organic N sources other than urea.  相似文献   
8.
Split broadcast applications of prilled urea, deep point-placed urea supergranules (USG), and broadcast sulfur-coated urea (SCU) were compared as nitrogen sources for wetland rice (Oryza sativa L.) in two field experiments on a sandy soil (Typic Ustipsamment) with a high percolation rate (approx. 110 mm/day) in the Punjab, India. The USG was consistently less effective than the split urea and averaged 1 ton ha–1 less rice yield at the highest nitrogen rate (116 kg N ha–1). SCU produced the highest grain yields in both experiments; it averaged 1.7 ton ha–1 more than did the split urea at the highest N rate.The fertilisers were then compared in field microplots; percolation was permitted or prevented so that the cause of the poor performance of USG could be elucidated. USG gave higher grain yield and N uptake in microplots that were not leached than in those that were leached. In leached microplots, the grain yields were higher from prilled urea than from USG treatments provided the placement pattern of the USG matched that of the field plots. Yields were not higher from treatments in which the USG were more closely spaced. In microplots in which leaching was prevented, the broadcast prilled urea was less effective than the deep-placed USG, which gave yields approximately 60% greater than those from split urea and the same as those from SCU. Broadcast prilled urea in undrained microplots caused high levels of ammonium (40 ppm) to develop in the floodwater where high pH (8.9) and high alkalinity (4.9 meq l–1) may have led to extensive ammonia volatilisation. The use of USG and SCU in undrained microplots reduced floodwater ammonium levels to less than 3 ppm.Urea and ammonium leaching losses measured in fallow soil columns in the laboratory were much greater from USG than from prilled urea. Leaching losses from SCU were negligible. The data suggest that SCU is the preferred N source for rice soils having a high percolation rate and that USG is a poor alternative to split applications of prilled urea.  相似文献   
9.
The role and function of organic matter in tropical soils   总被引:8,自引:0,他引:8  
Soil organic matter (SOM) has many functions, the relative importance of which differ with soil type, climate, and land use. Commonly the most importantfunction of OM in soil is as a reserve of the nitrogen and other nutrients required by plants, and ultimately by the human population. Other important functions include: the formation of stable aggregates and soil surface protection; maintenance of the vast array of biological functions, including the immobilization and release of nutrients; provision of ion exchange capacity; and storage of terrestrial carbon (C). This paper considers the quantity and quality of SOM of soils in the tropics, which are estimated to contain one quarter of the C in the global pool in terrestrial soils, and supports strongly the use of analytical methods to characterizing labile SOM to develop valuable insights into C dynamics. As in other regions, the transformation of tropical lands for agriculture exploits SOM, and in particular nutrient reserves. The process of exploitation is accelerated in the tropics by the necessity to increase agricultural production, largely through agricultural intensification, to overcome inadequate nutrition, to satisfy population growth, and to cope with the limited reserves of arable land. Poverty has an overriding influence on the exploitation and degradation processes. Areas at greatest risk of land degradation are the infertile acid soils of the tropics, which, invariably, are cultivated by the poor. Soil organic matter has a central role in sustainable land management, but perspectives on the roles of SOM differ widely between farmers, consumers, scientists and policy-makers. Some consider SOM as a source of nutrients to be exploited, whereas others can afford to utilize it as a key component in the management of the chemical, biological, and physical fertility of soils. Still others see SOM as a dumping ground for excess nutrients and toxins, or as a convenient store for fossil fuel emissions, particularly CO2. Farmers need sustainable land management systems that maintain OM and nutrient reserves. Nevertheless, many available practices, whether based on indigenous or scientific knowledge, do not meet social and economic criteria that govern farmer behaviour. Much scientific knowledge about the various roles of SOM does not reach farmers and other decision-makers in a form that can be used easily. The biggest challenge to researchers is to engage with clients to pinpoint gaps in knowledge and utilize new and existing information to devise decision support Systems tailored to their needs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号