首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   2篇
化学工业   71篇
轻工业   1篇
一般工业技术   26篇
  2021年   1篇
  2020年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   11篇
  2008年   4篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
排序方式: 共有98条查询结果,搜索用时 16 毫秒
1.
In the present study, the effects of charge‐transfer complex formation and intramolecular fragmentation (side‐chain lactonization) in radical copolymerization of tert‐butyl vinyl ether (t‐BVE) with anhydrides of maleic (MA) and citraconic (CA) acids and the structure–thermal behavior relationships of the resulting copolymers were examined using the 1H‐NMR, FTIR, DSC, and TGA analysis methods. It was shown that copolymerization under the chosen conditions proceeded through intramolecular fragmentation with the formation of γ‐lactone units. Side‐chain fragmentation of t‐BVE–MA and t‐BVE–CA copolymers also was confirmed by TGA and DSC analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2455–2463, 2006 2006  相似文献   
2.
Concanavalin A (Con A) immobilized poly(2‐hydroxyethyl methacrylate) (PHEMA) beads in a spherical form (100–150 μm in diameter) were used for the affinity chromatography purification of human immunoglobulin G (IgG) from aqueous solutions and human plasma. PHEMA adsorbents were prepared by suspension polymerization. Bioligand Con A was then immobilized by covalent binding onto PHEMA beads. The maximum IgG adsorption on the PHEMA/Con A beads was observed at pH 6.0. The nonspecific IgG adsorption onto the plain PHEMA adsorbents was very low (ca. 0.17 mg/g). Higher adsorption values (up to 54.3 mg/g) were obtained when the PHEMA/Con A beads were used from aqueous solutions. A higher adsorption capacity was observed for human plasma (up to 69.4 mg/g) with a purity of 82.5%. The adsorption capacities of other blood proteins were 2.0 mg/g for fibrinogen and 4.2 mg/g for albumin. The total protein adsorption was determined to be 76.0 mg/g. IgG molecules could be repeatedly adsorbed and desorbed with the PHEMA/Con A beads without noticeable loss in the IgG adsorption capacity. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1202–1208, 2005  相似文献   
3.
In this study, the functional monomers, N‐methacryloyl‐l ‐aspartic acid and N‐methacryloyl‐l ‐cysteine were synthesized through a reaction between appropriate amino acids and methacryloyl chloride. Then, Pb(II) or Cd(II) ion‐imprinted 2‐hydroxyethyl methacrylate based cryogels were prepared by free radical polymerization method under partially frozen conditions. Following the characterization of matrices, adsorption of heavy metal ions was examined in batch mode from aqueous solution considering several parameters affecting the adsorption performance. The actual adsorption capacities were 44.5, 65.3, and 86.7 mg/g for Cd‐1, Cd‐2, and Cd‐3 cryogels meanwhile those were 41.9, 86.3, and 122.7 mg/g for Pb‐1, Pb‐2, and Pb‐3 cryogels, respectively at optimum pH: 5.5. By increasing temperature, adsorption capabilities of both cryogels were inhibited because of the electrostatic nature of coordinated covalent bonds and collapsing of coordination spheres. The adsorption process was very fast, the equilibrium adsorption was achieved in about 60 min, which was directly related to macroporous structure and interconnected flow‐channels of cryogels. Kinetics and adsorption isotherms were also studied. Langmuir isotherms and pseudo‐second order kinetic model were well suited to adsorption data, which also indicated that the process occurred without any diffusion restrictions or steric hindrances. Finally, the competitive adsorption studies were performed using multi‐ion containing synthetic wastewater to show whether the cryogels developed are suitable for specific heavy metal recycling or not. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43095.  相似文献   
4.
The aim of this study was to prepare magnetic beads that could be used for the removal of heavy‐metal ions from synthetic solutions. Magnetic poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) [m‐poly(EGDMA–VTAZ)] beads were produced by suspension polymerization in the presence of a magnetite Fe3O4 nanopowder. The specific surface area of the m‐poly(EGDMA–VTAZ) beads was 74.8 m2/g with a diameter range of 150–200 μm, and the swelling ratio was 84%. The average Fe3O4 content of the resulting m‐poly(EGDMA–VTAZ) beads was 14.8%. The maximum binding capacities of the m‐poly(EGDMA–VTAZ) beads from aquous solution were 284.3 mg/g for Hg2+, 193.8 mg/g for Pb2+, 151.5 mg/g for Cu2+, 128.1 mg/g for Cd2+, and 99.4 mg/g for Zn2+. The affinity order on a mass basis was Hg2+ > Pb2+ > Cu2+ > Cd2+> Zn2+. The binding capacities from synthetic waste water were 178.1 mg/g for Hg2+, 132.4 mg/g for Pb2+, 83.5 mg/g for Cu2+, 54.1 mg/g for Cd2+, and 32.4 mg/g for Zn2+. The magnetic beads could be regenerated (up to ca. 97%) by a treatment with 0.1M HNO3. These features make m‐poly(EGDMA–VTAZ) beads potential supports for heavy‐metal removal under a magnetic field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
5.
Dye‐affinity adsorption is increasingly used for protein separation. Hollow‐fibres have advantages as adsorbents in comparison to conventional bead supports because they are not compressible and can eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of polyamide hollow‐fibres to which Reactive Green HE‐4BD was attached for adsorption of lysozyme. The hollow‐fibre was characterized by scanning electron microscopy. These dye‐carrying hollow‐fibres (26.3 µmol g?1) were used in the lysozyme adsorption–elution studies. The effect of initial concentration of lysozyme and medium pH on the adsorption efficiency of dye‐attached hollow‐fibres was studied in a batch system. The non‐specific adsorption of lysozyme on the polyamide hollow‐fibres was 1.8 mg g?1. Reactive Green HE‐4BD attachment significantly increased the lysozyme adsorption up to 41.1 mg g?1. Langmuir adsorption model was found to be applicable in interpreting lead adsorption by Reactive Green HE‐4BD attached hollow fibres. Significant amount of the adsorbed lysozyme (up to 95%) was eluted in 1 h in the elution medium containing 1.0 M NaSCN at pH 8.0. In order to determine the effects of adsorption conditions on possible conformational changes of lysozyme structure, fluorescence spectrophotometry was employed. We concluded that polyamide dye‐affinity hollow‐fibres can be applied for lysozyme adsorption without causing any significant conformational changes. Repeated adsorption–elution processes showed that these dye‐attached hollow‐fibres are suitable for lysozyme adsorption. © 2001 Society of Chemical Industry  相似文献   
6.
Low density lipoprotein (LDL) cholesterol is a major ingredient of the plaque that collects in the coronary arteries and causes coronary heart diseases. Among the methods used for the extracorporeal elimination of LDL from intravasal volume, immunoaffinity technique using anti-LDL antibody as a ligand offers superior selectivity and specificity. Proper orientation of the immobilized antibody is the main issue in immunoaffinity techniques. In this study, anti-human β-lipoprotein antibody (anti-LDL antibody) molecules were immobilized and oriented through protein A onto poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel in order to remove LDL from hypercholesterolemic human plasma. PHEMA cryogel was prepared by free radical polymerization initiated with N,N,N′,N′-tetramethylene diamine (TEMED). PHEMA cryogel with a swelling degree of 8.89 g H2O/g and 67% macro-porosity was characterized by swelling studies, scanning electron microscope (SEM) and blood compatibility tests. All the clotting times were increased when compared with control plasma. The maximum immobilized anti-LDL antibody amount was 63.2 mg/g in the case of random antibody immobilization and 19.6 mg/g in the case of oriented antibody immobilization (protein A loading was 57.0 mg/g). Random and oriented anti-LDL antibody immobilized PHEMA cryogels adsorbed 111 and 129 mg LDL/g cryogel from hypercholesterolemic human plasma, respectively. Up to 80% of the adsorbed LDL was desorbed. The adsorption–desorption cycle was repeated 6 times using the same cryogel. There was no significant loss of LDL adsorption capacity.  相似文献   
7.
N-Methacryloyl-l-phenylalanine (MAPA) containing poly(2-hydroxyethylmethacrylate) based magnetic [mag-poly(HEMA–MAPA)] nanobeads was prepared for lysozyme purification form chicken egg white. MAPA was synthesized by reacting methacryloyl chloride with l-phenylalanine methyl ester and provided hydrophobic functionality to the nanobeads. Size of mag-poly(HEMA–MAPA) nanobeads was 386 nm and obtained by surfactant free emulsion polymerization of HEMA and MAPA having a specific surface area of 580 m2/g. Mag-poly(HEMA–MAPA) nanobeads were characterized by FTIR, AFM, TEM, ESR, and elemental analysis. Lysozyme adsorption experiments were investigated under different conditions in batch system (i.e., medium pH, protein concentration, temperature, salt type). Lysozyme adsorption capacity of mag-poly(HEMA) and mag-poly(HEMA–MAPA) nanobeads from aqueous solutions was estimated as 24 and 517 mg/g, respectively. Lysozyme molecules were desorbed with 50% ethylene glycol solution with 98% recovery. It was observed that mag-poly(HEMA–MAPA) nanobeads can be used without significant decrease in lysozyme adsorption capacity after ten adsorption–desorption cycles. Mag-poly(HEMA–MAPA) nanobeads was used for the purification of lysozyme from chicken egg white. Purity of lysozyme was estimated by SDS-PAGE.  相似文献   
8.
The purification of hyaluronic acid (HA) is relatively significant to use in biomedical applications. The structure of HA is formed by the repetitive units of glucuronic acid and N-acetyl glucosamine. In this study, glucuronic acid-imprinted microbeads have been supplied for the purification of HA from cell culture (Streptococcus equi). Histidine-functional monomer, methacryloylamidohistidine (MAH) was chosen as the metal-complexing monomer. The glucuronic acid-imprinted poly(ethyleneglycoldimethacrylate-MAH-Copper(II)) [p(EDMA-MAH-Cu2+)] microbeads have been synthesized by typical suspension polymerization procedure. The template glucuronic acid has been removed by employing 5 M methanolic KOH solution. p(EDMA-MAH-Cu2+) microbeads have been characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) images and swelling studies. Moreover, HA adsorption experiments have been performed in a batch experimental set-up. Purification of HA from cell culture supernatant has been also investigated by determining the hyaluronidase activity using purified HA as substrate. The glucuronic acid imprinted p(EDMA-MAH-Cu2+) particles can be used many times with no significant loss in adsorption capacities. Also, the selectivity of prepared molecular imprinted polymers (MIP) has been examined. Results have showed that MIP particles are 19 times more selective for glucuronic acid than N-acetylglucose amine.  相似文献   
9.
The focus of this article is to develop a surface plasmon resonance (SPR) nanosensor to determine chloramphenicol (CAP) using the molecularly imprinted nanoparticles. The CAP imprinted nanoparticles were prepared by miniemulsion polymerization method. Then, the nanoparticles were attached onto the SPR nanosensor surface via temperature‐controlled evaporation. Surface characterization studies were performed with atomic force microscopy and contact angle measurements. Kinetic studies were performed with CAP solutions in the concentration range of 0.155–6.192 nM. Florphenicol (FLP) and thiamphenicol (TAP) having similar chemical structures to the template (i.e., CAP) were chosen as competitors to determine selectivity of the nanoparticles. Selectivity constants were observed as 8.86 for CAP/TAP and 8.36 for CAP/FLP. The detection limit was calculated as 40 ng/kg honey sample. In the light of these results, it was emphasized that the SPR nanosensor is able to recognize CAP selectively and has a potential for real‐time CAP detection in honey sample. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
10.
N‐methacryloyl‐(L )‐alanine (MALA) was synthesized by using methacryloyl chloride and alanine as a metal‐complexing ligand or comonomer. Spherical beads with an average diameter of 150–200 μm were obtained by suspension polymerization of MALA and 2‐hydroxyethyl methacrylate (HEMA) conducted in an aqueous dispersion medium. Poly(HEMA–MALA) beads were characterized by SEM, swelling studies, surface area measurement, and elemental analysis. Poly(HEMA–MALA) beads have a specific surface area of 68.5 m2/g. Poly(HEMA–MALA) beads with a swelling ratio of 63%, and containing 247 μmol MALA/g were used in the removal of Hg2+ from aqueous solutions. Adsorption equilibrium was achieved in about 60 min. The adsorption of Hg2+ ions onto PHEMA beads was negligible (0.3 mg/g). The MALA incorporation into the polymer structure significantly increased the mercury adsorption capacity (168 mg/g). Adsorption capacity of MALA containing beads increased significantly with pH. The adsorption of Hg2+ ions increased with increasing pH and reached a plateau value at around pH 5.0. Competitive heavy metal adsorption from aqueous solutions containing Cd2+, Cu2+, Pb2+, and Hg2+ was also investigated. The adsorption capacities are 44.5 mg/g for Hg2+, 6.4 mg/g for Cd2+, 2.9 mg/g for Pb2+, and 2.0 mg/g for Cu2+ ions. These results may be considered as an indication of higher specificity of the poly(HEMA–MALA) beads for the Hg2+ comparing to other ions. Consecutive adsorption and elution operations showed the feasibility of repeated use for poly(HEMA–MALA) chelating beads. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1222–1228, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号