首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   8篇
电工技术   1篇
化学工业   16篇
机械仪表   1篇
轻工业   4篇
无线电   2篇
一般工业技术   7篇
自动化技术   1篇
  2023年   2篇
  2022年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2002年   1篇
  1991年   1篇
排序方式: 共有32条查询结果,搜索用时 78 毫秒
1.
Multimedia Tools and Applications - Steganography is the art and science of producing covert communications by concealing secret messages in apparently innocent media, while steganalysis is the art...  相似文献   
2.
Polymeric membranes are extensively used for gas separations but their performance is limited by the upper bound trade‐off discovered by Robeson in 1991. Among the attractive modifications available to increase the performance of polymeric membranes, polymer blending is a unique technique because it offers a time‐ and cost‐effective method of tuning the properties of membranes. A variety of polymer blends has been explored in recent years. The application of polymer blends in gas separation membranes is described by critically analyzing the performance of polymer blend membranes. Polymer blend membranes of different polymer pairs are reviewed and evaluated in terms of phase behavior, permeability, and selectivity.  相似文献   
3.
This article presents fabrication, characterization, and performance evaluation of polyetherimide (PEI)/polyvinyl acetate (PVAc) blend membranes. Polymer blend membranes with various blend ratios of PEI/PVAc were prepared by solution casting and evaporation technique. Morphology and miscibility of polymer blend membranes were characterized by field emission scanning electron microscope (FESEM) and differential scanning calorimetry (DSC), respectively. The interaction between blend polymers was analyzed by FTIR analysis. Gas separation performance was evaluated in terms of permeability and selectivity. FESEM results revealed that pure polymer and blend membranes were homogeneous and dense in structure. A single glass transition temperature of polymer blend membranes was found in DSC analysis which indicated the miscibility of PEI/PVAc blend. FTIR analysis confirmed the presence of molecular interaction between blend polymers. The permeation results showed that the presence of PVAc (3 wt%) in blend membranes has improved CO2 permeability up to 95% compared to pure PEI membrane. In addition, CO2/CH4 selectivity was found to be 40% higher than pure PEI membrane. This study shows that blending a small fraction of PVAc can improve the gas separation performance of PEI/PVAc blend membranes. POLYM. ENG. SCI., 59:E293–E301, 2019. © 2018 Society of Plastics Engineers  相似文献   
4.
Membrane technology has been considered a key factor for sustainable growth in high-efficiency gas separation. Current mixed matrix membranes (MMMs) technology is rising, but these membranes in the dense structure are having difficulties in operating at high pressures and scale up for commercialization. The purpose of this research is to synthesize composite MMMs (CMMMs) consisting of polyethersulfone (PES), carbon molecular sieve (CMS 1–5 wt %), and Novatex 2471 nonwoven fabric (support layer). The membranes' physical, chemical, and thermal properties were evaluated by different analytical equipment. The morphology of both PES and PES-CMS composite membranes had a porous and asymmetric structure, in which CMS was uniformly distributed in the polymer matrix. The thermal properties showed that the membranes were stable up to 350 °C with a single glass transition temperature. The functional groups in the membrane were confirmed by spectral analysis. The gas performance results showed that carbon dioxide permeance increased with increased CMS concentration and methane permeance decreased due to the hindering effect of CMS under similar operating conditions. The highest selectivity achieved was 12.774 using CMMM of 5 wt % of CMS at 10 bar, which on average was 137.80%, improved selectivity compared to pure PES membrane. The support layer was able to withstand high operating pressures and showed the ability to scale up. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48476.  相似文献   
5.
Recent research in industries shows that existing layout configurations do not satisfy the needs of multi-product enterprises in turbulent environments but within new layout strategies, distributed layouts have deserved more attention in most manufacturing environments and have a promising potential to cope with demand disturbances. This study is an attempt to design weighted distributed layouts via considering machine independent capabilities by a resource elements (REs) approach, which has caused generation of a new type of distributed layout named semi-distributed layout. REs are used to define processing requirements of parts and processing capabilities of machines. Another contribution of this paper is applying genetic algorithms (GAs) to distribute REs to find the optimal assignment of machines to available locations in such a way the travelled distances of parts are minimised and the accessibility of them to the required machines are maximised. The methodology of this paper is illustrated using a two-phase procedure. First, all machining facilities are divided into a set of REs based on their capabilities and second, the weighted connections among REs are considered to distribute them over the floor through implementing the developed GA. To evaluate the methodology, the proposed algorithm is tested with three illustrative examples obtained from the literature, in which two of them are comparable with outputs of simulated annealing (SA). The comparison between the outputs of the GA and the SA on the same cases presents that for large size problems, the GA significantly outperforms the SA.  相似文献   
6.
This is a comparative study between ultra-high molecular weight polyethylene (UHMWPE) reinforced with micro-zinc oxide (ZnO) and nano-ZnO under different filler loads. These composites were subjected to dry sliding wear test under abrasive conditions. The micro- and nano-ZnO/UHMWPE composites were prepared by using a hot compression mould. The wear and friction behaviours were monitored using a pin-on-disc (POD) test rig. The pin-shaped samples were slid against 400 grit SiC abrasive papers, which were pasted, on the stainless steel disc under dry sliding conditions. The worn surfaces and transfer film formed were observed under the scanning electron microscope (SEM). Experimental results showed that UHMWPE reinforced with micro- and nano-ZnO would improve the wear behaviour. The average coefficient of friction (COF) for both micro- and nano-ZnO/UHMWPE composites were comparable to pure UHMWPE. The weight loss due to wear for nano-ZnO/UHMWPE composites are lower compared to micro-ZnO/UHMWPE and pure UHMWPE. The optimum filler loading of nano-ZnO/UHMWPE composites is found to be at 10 wt%. The worn surface of ZnO/UHMWPE composites shows the wear mechanisms of abrasive and adhesive wear. Upon reinforcement with micro- and nano-ZnO, the abrasive and adhesive wear of worn surfaces transited from rough to smooth.  相似文献   
7.
This paper describes the effect of torrefaction on the basic characteristics of agricultural biomass wastes in Malaysia, such as empty fruit bunches (EFB), mesocarp fiber and kernel shell as a potential source of solid fuel. Mesocarp fiber and kernel shell exhibited excellent energy yield values higher than 95%. EFB, on the other hand, exhibited a rather poor yield of 56%.  相似文献   
8.
The mixed‐matrix membrane (MMM) is a new membrane material for gas separation and plays a vital role for the advancement of current membrane‐based separation technology. Blending between inorganic fillers like carbon molecular sieves, zeolite, metal oxides, silica and silica nanoparticles, carbon nanotubes, zeolitic imidazolate framework, metal organic framework, and glassy and rubbery polymers etc. is possible. Due to mechanical, thermal, and chemical stability, these membranes achieve high permeability and selectivity as compared to pure polymeric materials. Despite of these advantages, the MMM performances are still below industrial expectations because of membrane defects and related processing problems as well as the nonuniform dispersion of fillers in MMMs. Material selection for organic and inorganic phases, preparation techniques, material advancements, and performance of MMMs are discussed. Issues and challenges faced during MMM synthesis as well as problem solutions are highlighted.  相似文献   
9.
Hydrotalcite-like inorganic layers of Zn-Al, a host containing an organic moiety, 2,4-dichlorophenoxy-acetate, as a guest, was prepared by the spontaneous self-assembly method from an aqueous solution for the formation of a new layered organic-inorganic hybrid nanocomposite material. In this synthesis, the host- and guest-forming species were simultaneously included in the mother liquor, aged, and separated. Various Zn/Al ratios (R = 2, 3, and 4), concentrations of 2,4-dichlorophenoxyacetic acid (0.03-0.1 M), and pH (7 and 10) were studied to optimize the formation of the layered nancomposite. It was found that the optimum conditions for the formation of the nanocomposite were R = 4, pH 7, and concentration of 2,4-dichlorophenoxyacetic acid = 0.08 M. X-ray diffraction shows that this sample affords a nanolayered structure with a basal spacing of 24.6 A.  相似文献   
10.
The application of thin‐film composite mixed‐matrix membranes (TFC‐MMMs) for gas separation is widely considered as an efficient separation technology. The principal methods for the preparation of TFC‐MMMs are dip‐coating, phase inversion, and interfacial polymerization comprising different types of support layers. These methods influence the CO2 permeation over the selective and support layers. A comprehensive review is provided for capturing new details of progress achieved in developing TFC‐MMMs with detailed performance of gas separation in the previous few years. Various preparation techniques of TFC‐MMMs and their effect on the gas separation performance of the prepared membranes are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号