首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学工业   15篇
一般工业技术   4篇
  2022年   1篇
  2019年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2004年   6篇
  2002年   1篇
  1999年   1篇
排序方式: 共有19条查询结果,搜索用时 93 毫秒
1.
Addition of H2 to a NO/NH3/O2/H2O feed for selective catalytic reduction of nitrogen oxide over Ag/Al2O3 catalysts causes an unusual enhancement of activity, e.g., the marginal activity (<10%) of 1 wt% Ag impregnated on γ-Al2O3 or mesoporous Al2O3 modifications is boosted to nearly 100% over a broad temperature range from 200 to 550°C at a space velocity of 30,000cm3g?1h?1). Contrary, silver on SiO2 or α-Al2O3 shows no improvement of activity in the presence of H2. The effect is tentatively attributed to a higher percentage of intermediary nano-sized Ag clusters on high-surface area Al2O3 in the presence of hydrogen. This promotes oxygen activation and hence NO oxidation to reactive intermediate nitrite species. The required dispersion of Ag cannot be stabilized on SiO2 or α-Al2O3.  相似文献   
2.
Dental implants are an established therapy for oral rehabilitation. High success rates are achieved in healthy bone, however, these rates decrease in compromised host bone. Coating of dental implants with components of the extracellular matrix is a promising approach to enhance osseointegration in compromised peri-implant bone. Dental titanium implants were coated with an artificial extracellular matrix (aECM) consisting of collagen type I and either one of two regioselectively low sulfated hyaluronan (sHA) derivatives (coll/sHA1Δ6s and coll/sHA1) and compared to commercial pure titanium implants (control). After extraction of the premolar teeth, 36 implants were inserted into the maxilla of 6 miniature pigs (6 implants per maxilla). The healing periods were 4 and 8 weeks, respectively. After animal sacrifice, the samples were evaluated histomorphologically and histomorphometrically. All surface states led to a sufficient implant osseointegration after 4 and 8 weeks. Inflammatory or foreign body reactions could not be observed. After 4 weeks of healing, implants coated with coll/sHA1Δ6s showed the highest bone implant contact (BIC; coll/sHA1Δ6s: 45.4 %; coll/sHA1: 42.2 %; control: 42.3 %). After 8 weeks, a decrease of BIC could be observed for coll/sHA1Δ6s and controls (coll/sHA1Δ6s: 37.3 %; control: 31.7 %). For implants coated with coll/sHA1, the bone implant contact increased (coll/sHA1: 50.8 %). Statistically significant differences could not be observed. Within the limits of the current study, aECM coatings containing low sHA increase peri-implant bone formation around dental implants in maxillary bone compared to controls in the early healing period.  相似文献   
3.
Topics in Catalysis - The NO storage properties of MnO x /support materials (5–50 wt% MnO x loading) was experimentally investigated in the presence of O2 and H2O between 50 and...  相似文献   
4.
The intrinsic viscosities, [η], of nine cellulose samples, with molar masses from 50 × 103 to 1 390 × 103 were determined in the solvents NMMO*H2O (N‐methyl morpholin N‐oxide hydrate) at 80°C and in cuen (copper II‐ethlenediamine) at 25°C. The evaluation of these results with respect to the Kuhn–Mark–Houwink relations shows that the data for NMMO*H2O fall on the usual straight line in the double logarithmic plots only for M ≤ 158 103; the corresponding [η]/M relation reads log ([η]/mL g−1) = –1.465 + 0.735 log M. Beyond that molar mass [η] remains almost constant up to M ≈ 106 and increases again thereafter. In contrast to NMMO*H2O the cellulose solutions in cuen behave normal and the Kuhn–Mark–Houwink relation reads log ([η]/mL g−1) = −1.185 + 0.735 log M. Possible reasons for the dissimilarities of the behavior of cellulose in these two solvents are being discussed. The comparison of three different methods for the determination of [η] from viscosity measurements at different polymer concentrations, c, demonstrates the advantages of plotting the natural logarithm of the relative viscosities as a function of c. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
5.
NH3 stored on zeolites in the form of NH4+ ions easily reacts with NO to N2 in the presence of O2 at temperatures <373 K under dry conditions. Wet conditions require a modification of the catalyst system. It is shown that MnO2 deposited on the external surface of zeolite Y by precipitation considerably enhances the NOx conversion by zeolite fixed NH4+ ions in the presence of water at 400–430 K. Particle-size analysis, temperature-programmed reduction, textural characterization, chemical analysis, ESR and XRD gave a subtle picture of the MnO2 phase structure. The MnO2 is a non-stoichiometric, amorphous phase that contains minor amounts of Mn2+ ions. It loses O2 upon inert heating up to 873 K, but does not crystallize or sinter. The phase is reducible by H2 in two stages via intermediate formation of Mn3O4. The manufacture of extrudates preserving stored NH4+ ions for NOx reduction is described. It was found that MnO2 can oxidize NO by bulk oxygen. This enables the reduction of NO to N2 by the zeolitic NH4+ ions without gas-phase oxygen for limited time periods. The composite catalyst retains storage capacity for both, oxygen and NH4+ ions despite the presence of moisture and allows short-term reduction of NO without gaseous O2 or additional reductants. The catalyst is likewise suitable for steady-state DeNOx operation at higher space velocities if gaseous NH3 is permanently supplied.  相似文献   
6.
Objectives The aim of the present study was to evaluate six different implant surface coatings with respect to bone formation. Being major structural components of the extracellular matrix, collagen, the non-collagenous components decorin/chondroitin sulphate (CS) and the growth factors TGF-β1/BMP-4 served in different combinations as coatings of experimental titanium implants. Materials and methods Eight miniature pigs received each six implants in the mandible. The implant design showed two circular recesses along the length axis. Three, four, five and six weeks after implant placement, the animals were sacrificed in groups of two. Bone-implant contact (BIC) was evaluated along the outer implant surface and within the recesses. Bone volume was determined by synchrotron radiation micro computed tomography (SRμCT) for one implant of each surface state, 6 weeks after placement. Results At each week of observation, collagen/CS or collagen/CS/BMP-4 coated implants showed the highest BIC of all surface states. This was statistically significant at week five (p = 0.030, p = 0.040) and six (p = 0.025, p = 0.005). SRμCT measurements determined the highest bone volume for a collagen/CS coated implant. Conclusion The results indicate that collagen/CS and collagen/CS/BMP-4 lead to a higher degree of bone formation compared to other ECM components.  相似文献   
7.
The biocompatibility of carrier nanomaterials in blood is largely hampered by their activating or inhibiting role on the clotting system, which in many cases prevents safe intravascular application. Here, we characterized an aqueous colloidal ethyl hydroxyethyl cellulose (EHEC) solution and tested its effect on ex vivo clot formation, platelet aggregation, and activation by thromboelastometry, aggregometry, and flow cytometry. We compared the impact of EHEC solution on platelet aggregation with biocompatible materials used in transfusion medicine (the plasma expanders gelatin polysuccinate and hydroxyethyl starch). We demonstrate that the EHEC solution, in contrast to commercial products exhibiting Newtonian flow behavior, resembles the shear-thinning behavior of human blood. Similar to established nanomaterials that are considered biocompatible when added to blood, the EHEC exposure of resting platelets in platelet-rich plasma does not enhance tissue thromboplastin- or ellagic acid-induced blood clotting, or platelet aggregation or activation, as measured by integrin αIIbβ3 activation and P-selectin exposure. Furthermore, the addition of EHEC solution to adenosine diphosphate (ADP)-stimulated platelet-rich plasma does not affect the platelet aggregation induced by this agonist. Overall, our results suggest that EHEC may be suitable as a biocompatible carrier material in blood circulation and for applications in flow-dependent diagnostics.  相似文献   
8.
The NO storage properties of MnO x /support materials (5–50 wt% MnO x loading) was experimentally investigated in the presence of O2 and H2O between 50 and 700 °C applying a non-isothermal temperature-programmed method. In dependence on MnO x loading and NO supply, the materials show an intermediate decrease of NO storage capacity between 200 and 300 °C. This effect is caused by decomposition of surface nitrites with release of NO into the gas phase as proved by in situ DRIFT measurement. The interpretation is corroborated by modelling of the underlying adsorption/desorption reaction steps, considering the different thermal stability of nitrite/nitrate surface species.  相似文献   
9.
Progress in drug delivery is hampered by a lack of efficient strategies to target drugs with high specificity and precise spatiotemporal regulation. The remote control of nanoparticles and drugs with light allows regulation of their action site and dosage. Peptide-based drugs are highly specific, non-immunogenic, and can be designed to cross the plasma membrane. In order to combine target specificity and remote control of drug action, here we describe a versatile strategy based on a generalized template to design nanoswitchable peptides that modulate protein–protein interactions upon light activation. This approach is demonstrated to promote photomodulation of two important targets involved in apoptosis (the interactions Bcl-xL–Bak and MDM2–p53), but can be also applied to a large pool of therapeutically relevant protein–protein interactions mediated by α-helical motifs. The template can be adjusted using readily available information about hot spots (residues contributing most to the binding energy) at the protein–protein interface of interest.  相似文献   
10.
Summary: Access to sufficiently large amounts of material with adequate molecular and chemical uniformity from polydisperse natural products or synthetic materials has been a long‐standing challenge to polymer scientists. We have developed a broadly applicable preparative fractionation method consisting of a special kind of continuous extraction removing the easier soluble components from the initial product. It is rendered possible by the use of spinning nozzles through which a concentrated polymer solution is pressed into a liquid of tailored thermodynamic quality. The initially produced jets of the source phase disintegrate rapidly into minute droplets of typically 50 μm diameter. This efficient subdivision provides the large surfaces and short routs of transport required for successful fractionation. Thus the pronounced kinetic hindrances resulting from the high viscosities of reasonable concentrated polymer solutions can be overcome. We portray the principal features of continuous spin fractionation and present two examples of practical importance.

Functional principle of ‘continuous spin fractionation’ (CSF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号