首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5231篇
  免费   382篇
  国内免费   6篇
电工技术   88篇
化学工业   1392篇
金属工艺   95篇
机械仪表   211篇
建筑科学   212篇
矿业工程   14篇
能源动力   204篇
轻工业   940篇
水利工程   59篇
石油天然气   32篇
无线电   343篇
一般工业技术   737篇
冶金工业   370篇
原子能技术   39篇
自动化技术   883篇
  2024年   18篇
  2023年   58篇
  2022年   146篇
  2021年   272篇
  2020年   191篇
  2019年   229篇
  2018年   210篇
  2017年   229篇
  2016年   219篇
  2015年   178篇
  2014年   260篇
  2013年   422篇
  2012年   331篇
  2011年   387篇
  2010年   304篇
  2009年   293篇
  2008年   235篇
  2007年   229篇
  2006年   186篇
  2005年   123篇
  2004年   125篇
  2003年   86篇
  2002年   99篇
  2001年   74篇
  2000年   69篇
  1999年   51篇
  1998年   123篇
  1997年   90篇
  1996年   56篇
  1995年   57篇
  1994年   36篇
  1993年   36篇
  1992年   15篇
  1991年   14篇
  1990年   16篇
  1989年   15篇
  1988年   14篇
  1987年   5篇
  1986年   14篇
  1985年   13篇
  1984年   16篇
  1983年   16篇
  1982年   8篇
  1981年   7篇
  1980年   4篇
  1978年   7篇
  1977年   5篇
  1976年   11篇
  1975年   4篇
  1974年   3篇
排序方式: 共有5619条查询结果,搜索用时 0 毫秒
1.
Analog Integrated Circuits and Signal Processing - This paper presents the complete design of a phase locked loop-based clock synthesizer for reconfigurable analog-to-digital converters. The...  相似文献   
2.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
3.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
4.
Traditionally, in supervised machine learning, (a significant) part of the available data (usually 50%-80%) is used for training and the rest—for validation. In many problems, however, the data are highly imbalanced in regard to different classes or does not have good coverage of the feasible data space which, in turn, creates problems in validation and usage phase. In this paper, we propose a technique for synthesizing feasible and likely data to help balance the classes as well as to boost the performance in terms of confusion matrix as well as overall. The idea, in a nutshell, is to synthesize data samples in close vicinity to the actual data samples specifically for the less represented (minority) classes. This has also implications to the so-called fairness of machine learning. In this paper, we propose a specific method for synthesizing data in a way to balance the classes and boost the performance, especially of the minority classes. It is generic and can be applied to different base algorithms, for example, support vector machines, k-nearest neighbour classifiers deep neural, rule-based classifiers, decision trees, and so forth. The results demonstrated that (a) a significantly more balanced (and fair) classification results can be achieved and (b) that the overall performance as well as the performance per class measured by confusion matrix can be boosted. In addition, this approach can be very valuable for the cases when the number of actual available labelled data is small which itself is one of the problems of the contemporary machine learning.  相似文献   
5.
Here we report some recent biophysical issues on the preparation of solute-filled lipid vesicles and their relevance to the construction of “synthetic cells.” First, we introduce the “semi-synthetic minimal cells” as the liposome-based cell-like systems, which contain a minimal number of biomolecules required to display simple and complex biological functions. Next, we focus on recent aspects related to the construction of synthetic cells. Emphasis is given to the interplay between the methods of synthetic cell preparation and the physics of solute encapsulation. We briefly introduce the notion of structural and compositional “diversity” in synthetic cell populations.  相似文献   
6.
The work reported involved the fabrication of an electrospun tubular conduit of a gelatin and polycaprolactone (PCL) blend as an adventitia‐equivalent construct. Gelatin was included as the matrix for increased biocompatibility with the addition of PCL for durability. This is contrary to most of the literature available for biomaterials based on blends of gelatin and PCL where PCL is the major matrix. The work includes the assiduous selection of key electrospinning parameters to obtain smooth bead‐free fibres with a narrow distribution of pore size and fibre diameter. Few reports elucidate the optimization of all electrospinning parameters to fabricate tubular conduits with a focus on obtaining homogeneous pores and fibres. This stepwise investigation would be unique for the fabrication of gelatin–PCL electrospun tubular constructs. The fabricated microfibrous gelatin–PCL constructs had pores of size ca 50–100 μm reportedly conducive for cell infiltration. The measured value of surface roughness of 57.99 ± 17.4 nm is reported to be favourable for protein adhesion and cell adhesion. The elastic modulus was observed to be similar to that of the tunica adventitia of the native artery. Preliminary in vitro and in vivo biocompatibility tests suggest safe applicability as a biomaterial. Minimal cytotoxicity was observed using MTT assay. Subcutaneous implantation of the scaffold demonstrated acute inflammation which decreased by day 15. The findings of this study could enable the fabrication of smooth bead‐free microfibrous gelatin–PCL tubular construct as viable biomaterial which can be included in a bilayer or a trilayer scaffold for vascular tissue engineering. © 2019 Society of Chemical Industry  相似文献   
7.
8.
9.
A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme’s independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.  相似文献   
10.
Progesterone is a natural hormone steroid used in humans for several treatments and in livestock for artificial insemination, which exhibits two polymorphic forms at ambient conditions: form 1 and form 2. Form 2 is metastable and more soluble than form 1; however, it is not suitable to use as powder raw material because it transforms into form 1 by the effects of grinding. A polymorphic screening of progesterone based on polymer-induced heteronucleation method was performed as an alternative to prepare the metastable form. Polyvinyl alcohol, hydroxypropyl methylcellulose (HPMC), dextran, gelatin, polyisoprene (PI) and acrylonitrile-butadiene (NBR) copolymer were used. Crystals were prepared from 0.5, 10 and 40?mg/mL solutions in acetone at room temperature by solvent evaporation. The samples were characterized by X-ray powder diffraction, differential scanning calorimetry (DSC), scanning electron microcopy and attenuated total reflectance infrared Fourier transform spectroscopy. Form 1 was nucleated from 40?mg/mL solutions on the six polymers and from 10?mg/mL solutions on PI and NBR. The mixture of form 1 and form 2 was obtained from 10?mg/mL solution on HPMC, dextran and gelatin and from 0.5?mg/mL solution crystallizations. Therefore, the polymeric devices, which crystallized the metastable and more soluble polymorph (2) of progesterone, would be a promissory alternative for the pharmaceutical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号