首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
化学工业   1篇
一般工业技术   1篇
  2016年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Nanocomposites based on sequential semi–interpenetrating polymer networks (semi–IPNs) of crosslinked polyurethane and linear poly(2‐hydroxyethyl methacrylate) filled with 1–15 wt % of nanofiller densil were prepared and investigated. Nanofiller densil used in an attempt to control the microphase separation of the polymer matrix by polymer–filler interactions. The morphology (SAXS, AFM), mechanical properties (stress–strain), thermal transitions (DSC) and polymer dynamics (DRS, TSDC) of the nanocomposites were investigated. Special attention has been paid to the raising of the hydration properties and the dynamics of water molecules in the nanocomposites in the perspective of biomedical applications. Nanoparticles were found to aggregate partially for higher than 3 and 5 wt % filler loading in semi–IPNs with 17 and 37 wt % PHEMA, respectively. The results show that the good hydration properties of the semi–IPN matrix are preserved in the nanocomposites, which in combination with results of thermal and dielectric techniques revealed also the existence of polymer–polymer and polymer–filler interactions. These interactions results also in the improvement of physical and mechanical properties of the nanocomposites in compare with the neat matrix. The improvement of mechanical properties in combination with hydrophilicity and biocompatibility of nanocomposites are promising for use these materials for biomedical application namely as surgical films for wound treatment and as material for producing the medical devises. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43122.  相似文献   
2.
Liposomes applications in health care include meanly their ability to carry drugs and genes inside the human body for therapeutic purposes. Nevertheless their applicability can extend far beyond and could be used as analytical tools in order to perform rapid, low-cost, sensitive and specific analyses. Their physical characteristics, such as large internal volume and extended surface area, render them ideal for these applications and specifically for improving the specificity and sensitivity of the analytical assay. The purpose of this study was to develop a simple, stable and low-cost oligonucleotide-tagged liposomal formulation consisting of EggPC and DPPG with a simple to synthesize thiol-reactive conjugate (Mal-SA) incorporated into the lipid bilayer of liposomes. The prepared liposomes, having also the water soluble dye Sulforhodamine B encapsulated in their inner cavity, were characterized in terms of their physicochemical (size, size distribution, zeta-potential, lipid content) and mechanical (morphology, rigidity) properties. The results showed that the final liposomal formulation could be used in the future as analytical tool for detecting pathogen strains of microorganism in biological milieu.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号