首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
化学工业   7篇
机械仪表   2篇
矿业工程   1篇
能源动力   4篇
轻工业   3篇
石油天然气   1篇
无线电   4篇
一般工业技术   5篇
冶金工业   2篇
自动化技术   4篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
A novel multi‐component system containing poly(vinyl alcohol), lithium bromide, sulfuric acid, ethylene carbonate and hydroquinone was prepared using a solution‐casting technique. The presence of hydroquinone as a reducing agent in the inorganic–organic membrane structure thus produced was thought to lead to enhanced thermal stability of the membrane. The activation energy for the thermal decomposition of the product samples increased with increasing hydroquinone doping. The ionic conductivities of the films were determined from AC impedance measurements in the temperature range 300–373 K. The maximum conductivity was found to be 1.75 × 10?3 S cm?1 for a film doped with 4 wt% hydroquinone. The results give some insight into the potential utility of the membrane as a proton‐conducting solid polymer electrolyte. Copyright © 2011 Society of Chemical Industry  相似文献   
2.
ABSTRACT: Two multivariate calibration methods, partial least squares (PLS) and principal component regression (PCR), were applied to the spectrophotometric simultaneous determination of 2-mercaptobenzimidazole (MB) and 2-thiouracil (TU). A genetic algorithm (GA) using partial least squares was successfully utilized as a variable selection method. The concentration model was based on the absorption spectra in the range of 200 to 350 nm for 25 different mixtures of MB and TU. The calibration curve was linear across the concentration range of 1 to 10 μg mL−1 and 1.5 to 15 μg mL−1 for MB and TU, respectively. The values of the root mean squares error of prediction (RMSEP) were 0.3984, 0.1066, and 0.0713 for MB and 0.2010, 0.1667, and 0.1115 for TU, which were obtained using PCR, PLS, and GA-PLS, respectively. Finally, the practical applicability of the GA-PLS method was effectively evaluated by the concurrent detection of both analytes in animal tissues. It should also be mentioned that the proposed method is a simple and rapid way that requires no preliminary separation steps and can be used easily for the analysis of these compounds, especially in quality control laboratories.  相似文献   
3.
Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of lidocaine, a test drug compound, on a platinum electrode. Lidocaine was oxidized at constant potential and by square-wave potential pulses with different cycle times, and the reaction products were analyzed by liquid chromatography-mass spectrometry [LC-MS(/MS)]. Application of constant potentials of up to +5.0 V resulted in relatively low yields of N-dealkylation and 4-hydroxylation products, while oxidation by square-wave potential pulses generated up to 50 times more of the 4-hydroxylation product at cycle times between 0.2 and 12 s (estimated yield of 10%). The highest yield of the N-dealkylation product was obtained at cycle times shorter than 0.2 s. Tuning of the cycle time is thus an important parameter to modulate the selectivity of electrochemical oxidation reactions. The N-oxidation product was only obtained by electrochemical oxidation under air atmosphere due to reaction with electrogenerated hydrogen peroxide. Square-wave potential pulses may also be applicable to modulate the selectivity of electrochemical reactions with other drug compounds in order to generate oxidation products with greater selectivity and higher yield based on the optimization of cycle times and potentials. This considerably widens the scope of direct electrochemistry-based oxidation reactions for the imitation of in vivo oxidative drug metabolism.  相似文献   
4.
The fast spread of coronavirus disease (COVID-19) caused by SARSCoV-2 has become a pandemic and a serious threat to the world. As of May 30, 2020, this disease had infected more than 6 million people globally, with hundreds of thousands of deaths. Therefore, there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems. This study uses gradient boosting regression (GBR) to build a trained model to predict the daily total confirmed cases of COVID-19. The GBR method can minimize the loss function of the training process and create a single strong learner from weak learners. Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22, 2020, to May 30, 2020. The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness of the GBR method. The results reveal that the GBR model achieves 0.00686 root mean square error, the lowest among several comparative models.  相似文献   
5.
The present study addresses the effect of various schemes for applying an external force term on the accuracy and performance of the thermal lattice Boltzmann method (LBM) for simulation of free convection problems. Herein, the forcing schemes of Luo, shifted velocity method, Guo, and exact difference method are applied by considering three velocity discrete models of D2Q4, D2Q5, and D2Q9. The accuracy and performance of these schemes are evaluated with the simulation of three natural convection problems, namely, free convection in a closed cavity, in a square enclosure with a hot obstacle inside, and the Rayleigh-Benard problem. The obtained results based on the present thermal LBM with different forcing schemes and velocity discrete models are compared with the existing experimental and numerical data in the literature. This comparison study indicates that imposing all employed forcing schemes leads to similar performance for the simulation of free convection problems studied at the middle range of Rayleigh numbers. It is found that the Luo forcing scheme is simple for implementation in comparison with the other three forcing schemes and provides the results with acceptable accuracy at moderate Rayleigh numbers. At higher Rayleigh numbers, however, the Guo scheme is not only numerically stable but a more precise forcing scheme in comparison with the other three methods. It is illustrated that employing the discrete velocity model of D2Q4 has more appropriate numerical stability along with less computational cost in comparison with two other discrete velocity models for simulation of natural convection heat transfer.  相似文献   
6.
7.
The polymer/multiwalled carbon nanotube [poly(vinyl alcohol) (PVA)/carboxyethyl acrylate (CEA)]‐multiwalled carbon nanotube (MWCNT) and its amino functionalized (PVA/CEA)‐MWCNT‐NH2 nanocomposite samples were successfully synthesized by the chemical method in the form of films. The samples were irradiated with gamma‐ray doses of 50 and 100 kGy and with ion beam fluence of 2.5 × 1018 and 3.75 × 1018 ions cm?2. The prepared nanocomposite samples were characterized using X‐ray diffraction and thermogravimetric analysis. The X‐ray diffraction and thermogravimetric analysis confirm the existence of the chemical crosslinking occurred in the polymer compositions. The AC electrical conductivity, electrical modulus, dielectric constant, and dielectric loss in the frequency range 102–106 Hz are measured at room temperature. The electrical conductivity is increased with MWCNT doping, gamma‐irradiation, and by ion beam irradiation. A comprehensive analysis of the results revealed that dielectric properties are improved due to the induced physicochemical changes and conductive networks induced by ion beam irradiation. The behavioral effect of these embedded nanoparticles in a PVA matrix on the microstructural, dielectric, and electric properties is analyzed for possible device applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46647.  相似文献   
8.
Mobile Networks and Applications - The Internet Protocol (IP) architecture could not fully satisfy the Vehicular Ad-hoc Networks (VANETs) needed efficiency, due to their dynamic topology and high...  相似文献   
9.
The self-restraint testing was used to investigate the influence of hydrogen content, preheating, and post-heating on the sensitivity of welding of API X70 pipeline steel to hydrogen induced cracking (HIC). The variation of hydrogen content was applied using a low hydrogen electrode E8018-G and a high hydrogen (cellulosic) electrode E8010-P1. Diffusible hydrogen of these electrodes was measured by mercury displacement method. The average diffusible hydrogen content of cellulosic electrode E8010-P1 and low hydrogen electrode E8018-G were 43.6 and 1.1 ml/100 g of weld metal, respectively. The results of visual inspection, penetrant test, and macroscopic examination showed that welding with cellulosic electrode leads to cracking unless both preheating and post-heating are applied. However, in the case of low hydrogen electrode, cracking occurs only if no preheating or post-heating is applied. The microstructure of the welded specimens in different conditions by optical and scanning electron microscopy (SEM) showed that the dominant phase in the weld zone of all specimens is bainite. The microhardness profile displayed that hardness limitation (350 HV) cannot predict the sensitivity to cold cracking; therefore, other parameters such as hydrogen content should also be considered.  相似文献   
10.
A New approach is introduced to incorporate multi-walled carbon nanotubes (MWCNTs) in cementitious materials. The MWCNTs are dispersed in styrene butadiene rubber (SBR) matrix before mixing the matrix with cement. Surfactants have been successfully applied to enhance the dispersion and functionalization of MWCNTs in SBR. The significance of using this MWCNTs–SBR nanocomposite on the mechanical characteristics including compressive and tensile strengths and microstructural features of latex modified mortar (LMM) were examined. Subsequently, the significance of the functionalized MWCNTs on surface chemistry, microstructure and thermal stability of SBR were characterized. MWCNTs were found to be a useful additive for enhancing the mechanical response and thermal stability of SBR. MWCNTs–SBR nanocomposite was observed to be able to bridge micro-cracks in the LMM which helped enhancing its mechanical properties. The ability of MWCNTs to enhance the mechanical response of SBR polymer matrix might be attributed to chemical bond that functionalized MWCNTs can establish with the SBR polymer matrix. The enhanced MWCNTs–SBR nanocomposite gave rise to improved microstructural features of the LMM. Microstructural investigations showed MWCNTs were well dispersed in and bonded to the SBR matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号