首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
化学工业   14篇
轻工业   1篇
石油天然气   1篇
无线电   2篇
一般工业技术   4篇
自动化技术   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1997年   1篇
  1966年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Studies of thermo-oxidative and fire-resistant properties of the polypropylene/multi-walled carbon nanotube composites (PP/MWCNT) prepared by melt intercalation are discussed. The effective kinetic parameters of the PP/MWCNT thermo-oxidative decomposition were computed according to the model-based kinetic analysis. The thermo-oxidative decomposition behavior of PP/MWCNT and stabilizing effect caused by addition of MWCNT has been investigated by means of TGA and EPR spectroscopy. Comparative analysis of the flammability characteristics for PP-clay/MWCNT nanocomposites was provided in order to emphasize the specific behavior of the nanocomposites.  相似文献   
2.
3.
The synthesis and decomposition of hexamethylene triperoxide diamine (HMTD) were studied. Mechanisms were proposed based on isotopic labeling and mass spectral interpretation of both condensed phase products and head‐space products. Formation of HMTD from hexamine appeared to proceed from dissociated hexamine as evident from scrambling of the 15N label when synthesis was carried out with equal molar labeled/unlabeled hexamine. Decomposition of HMTD was considered with additives and in the presence and absence of moisture. In addition to mass spectral interpretation, density functional theory (DFT) was used to calculate energy differences of transition states and the entropies of intermediates along different possible decomposition pathways. HMTD is destabilized by water and citric acid making purification following initial synthesis essential in order to avoid unanticipated violent reaction.  相似文献   
4.
Yttrium aluminium garnet (YAG) powders substituted by neodymium Y3−xNdxAl5O12 (x = 0.1, 0.25, 0.35, 0.5, 0.6, 0.7, 0.8, 1.5, 2.0, 2.5, and 3.0) were prepared by a simple aqueous sol–gel method using aluminium nitrate nonahydrate, yttrium oxide, neodymium oxide as the starting materials and ethane-1,2-diol as complexing agent. The powders annealed at 1000 °C in air were characterized by X-ray diffraction (XRD) analysis, infrared (IR) spectroscopy and scanning electron microscopy (SEM). It was demonstrated, however, that the total substitution of yttrium by neodymium does not proceed in the YAG. Pure cubic garnet phase was formed only at low concentration of neodymium (x = 0.1, 0.25, 0.35, 0.5, 0.6, 0.7, 0.8 and 1.5). With further substitution, when the amount of neodymium was x = 2.0, 2.5 and 3.0 the main part of garnet phase transformed in to the perovskite neodymium aluminate (NdAlO3) phase.  相似文献   
5.
A comparative study of the vibrational spectroscopy of peroxide-based explosives is presented. Triacetone triperoxide (TATP) and hexamethyl-enetriperoxide-diamine (HMTD), now commonly used by terrorists, are examined as well as other peroxide-ring structures: DADP (diacetone diperoxide); TPTP [3,3,6,6,9,9-Hexaethyl-1,2,4,5,7,8-hexaoxo-nonane (tripentanone triperoxide)]; DCypDp {6,7,13,14-Tetraoxadispiro [4.2.4.2]tetradecane (dicyclopentanone diperoxide)}; TCypDp {6,7,15,16,22,23-Hexaoxatrispiro[4.2.4.2.4.2] henicosane (tricyclopentanone triperoxide)}; DCyhDp {7,8,15,16-tetraoxadispiro [5.2.5.2] hexadecane (dicyclohexanone diperoxide)}; and TCyhTp {7,8,14,15,21,22-hexaoxatrispiro [5.2.5.2.5.2] tetracosane (tricyclohexanone triperoxide)}. Both Raman and infrared (IR) spectra were measured and compared to theoretical calculations. The calculated spectra were obtained by calculation of the harmonic frequencies of the studied compounds, at the density functional theory (DFT) B3LYP/cc-pVDZ level of theory, and by the use of scaling factors. It is found that the vibrational features related to the peroxide bonds are strongly mixed. As a result, the spectrum is congested and highly sensitive to minor changes in the molecule.  相似文献   
6.
Nanocomposites polypropylene (PP) with 3 and 7 wt % of clay were prepared by melt mixing. Four types of maleic anhydride grafted PP (MAPP) in broad range of MA groups content (0.3–4 wt %) and molecular weights (MW) were used as polar compatibilizers. The effect of the MAPP kind on both the clay dispersion and miscibility with PP was studied. The mixed intercalated/exfoliated morphologies of nanocomposites in the presence of all studied compatibilizers were revealed by XRD and TEM. The oligomer compatibilizer with 4 wt % of MA groups increases the intercalation ability of polymer into clay galleries but this one has limited miscibility with PP and worsens crystalline structure of polymer matrix. The MAPPs with 0.3–1.3% of MA are characterized by the lower intercalation ability but well cocrystallize with PP. Maximum reinforcing effect is attained using high MW MAPP with 0.6% MA and for nanocomposite with 7 wt % (3.8 vol %) of clay it averages almost 1.7 times relative to neat PP and 1.3 times relative to noncompatibilized composite. Dynamic storage moduli of nanocomposites compatibilized by MAPPs with 0.3–1.3% of MA containing 7 wt % of clay increase up to 1.4–1.5 around 30–75°C and over the whole temperature range remain higher compared with both neat PP and uncompatibilized composite. On the contrary, the oligomer MAPP with 4 wt % of MA groups decreases the thermal–mechanical stability of nanocomposite at high temperature compared with both PP and uncompatibilized composites. The study of nanocomposites flammability showed that creating complex composites containing both layered silicate and relatively small amount of magnesium hydroxide can be a successful approach to reduce the combustibility of PP‐based nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
7.
The catalytic performance of pyrolyzed carbon-supported cobalt-nitrogen donor (CoN4) catalysts for the oxidation of thiol compounds by dioxygen in aqueous solution was studied. This paper continues our previous line of research, which was inspired by the electrocatalytic reduction of oxygen on pyrolyzed carbon-supported cobalt-porphyrins and related tetra-coordinated nitrogen donor-transition metal complexes (MeN4, where Me stands for a transition metal atom). Both pyrolyzed carbon-supported Co-imidazole and Co-porphyrin exhibited fast catalytic oxidation of the different thiols. The rate of oxidation of different thiols on the pyrolyzed CoN4 catalysts was compared to the homogeneous rate of oxidation using 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin Co(II) tetrasodium salt as catalyst. Based on the cobalt content, the heterogeneous catalysts always outperformed the homogeneous one, and at times even exhibited 4,100-fold better catalysis. The dependence of the catalytic rate of oxidation on the preparation temperature was investigated, showing an optimal catalysis at ˜650 °C for the cobalt-imidazole catalyst. The decrease in catalytic performance after heat treatment at elevated temperature was attributed to the formation of cobalt metal acting as a generator of carbon nanotubes.  相似文献   
8.
The photosensitizers Rose Bengal (RB) and methylene blue (MB), when immobilized in polystyrene, were found to exhibit high antibacterial activity in a continuous regime. The photosensitizers were immobilized by dissolution in chloroform, together with polystyrene, with further evaporation of the solvent, yielding thin polymeric films. Shallow reservoirs, bottom-covered with these films, were used for constructing continuous-flow photoreactors for the eradication of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and wastewater bacteria under illumination with visible white light using a luminescent lamp at a 1.8 mW·cm−2 fluence rate. The bacterial concentration decreased by two to five orders of magnitude in separate reactors with either immobilized RB or MB, as well as in three reactors connected in series, which contained one of the photosensitizers. Bacterial eradication reached more than five orders of magnitude in two reactors connected in series, where the first reactor contained immobilized RB and the second contained immobilized MB.  相似文献   
9.
Ring expansion and isomerization in 1- and 2-methylene indene radicals and isomerizations among the three isomers of methyl indene were studied by the Becke three-parameter hybrid method with Lee-Yang-Parr correlation functional approximation (B3LYP). Structure, energy, and frequency calculations were carried out with the Dunning correlation consistent polarized doubleζ, (cc-pVDZ) basis set. In contrast to methyl cyclopentadiene, transition states for ring expansion starting from the molecule methyl indene could not be located. The potential energy surfaces for ring expansion in methylene indene radicals consist of several intermediates and transition states and involve two principal pathways. One pathway is associated with cleavage of the five-membered ring adjacent to the methylene group and formation of a six-membered ring. In the second pathway, the transition states of the first stage consist of a newly-formed three-membered ring fused to the original cyclopentadiene ring. In all cases, the reaction pathways leading to ring expansion include an intermediate that, via an additional transition state, produces an α- or (β-hydronaphthalene radical. The latter, by a fast H-atom ejection, forms naphthalene. The structure, energetics, and additional parameters on the potential energy surfaces are shown. Several transition states and intermediates are common to both ring expansion and isomerization, so that there are competing parallel pathways that determine the final distribution among the isomerization and ring expansion products. Potential energy surfaces for interisomerization among the various isomers of methyl indene were calculated, and several reaction pathways were suggested.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号