首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
化学工业   18篇
金属工艺   1篇
机械仪表   3篇
轻工业   4篇
无线电   4篇
一般工业技术   6篇
冶金工业   5篇
自动化技术   2篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
BACKGROUND: Over the past several decades methyl tert‐butyl ether (MTBE) as additive to gasoline, intended to either boost ratings of fuel or to reduce air pollution, has been accepted worldwide. Since MTBE has high water solubility, the occurrence of fuel spills or leaks from underground storage tanks or transferring pipeline has led to the contamination of natural waters. In this study the degradation of aqueous MTBE at relatively high concentrations was investigated by a UV‐visible/ZnO/H2O2 photocatalytic process. The effects of important operational parameters such as pH, amount of H2O2, catalyst loading and irradiation time were also investigated. Concentration of MTBE and intermediates such as tert‐butyl formate and tert‐butyl alcohol were measured. RESULTS: Time required for complete degradation increased from 20 to 150 min when the initial concentration was increased from 10 to 500 mg L?1. The first‐order rate constants for degradation of MTBE were estimated to be 0.183–0.022 min?1 as the concentration increased from 10 to 500 mg L?1. Study of the overall mineralization monitored by total organic carbon analysis showed that at an initial concentration of 100 mg L?1 MTBE complete mineralization was obtained after 100 min under UV‐visible/ZnO/H2O2 photocatalysis. CONCLUSION: The data presented in this paper clearly indicated that UV‐visible/ZnO/O2 as an advanced oxidation process provides an efficient treatment alternative for the remediation of MTBE‐contaminated waters. Copyright © 2008 Society of Chemical Industry  相似文献   
2.
Deposition of zinc oxide films from aqueous solutions containing complex Zn2+ ions on soda-lime substrates were studied by two-stage chemical deposition (TSCD) process. It was shown that the film thickness can be controlled by the number of dipping stages. Nano-layers were produced with less than nine times dipping stages. Greater dipping numbers resulted in film thickness exceeding 100 nm. The growth rate obeyed double-stage zeroth order with respect to the concentration and first order with respect to the temperature. This rate was proportional to the difference between the temperature of the hot water and the substrate. Overall activation energy of 17.20 ± 0.42 kJ mol−1 and frequency factor of 2.81 ± 0.07 μm s−1 was determined for ZnO deposition. These values were attributed to two resistances. One resistance corresponded with film heat transfer mechanism. The other was attributed to species attachment to the solid substrate. A modification to the diffuse-interface kinetic model was devised for explanation of the latter. EDAX (electron dispersive elemental analysis), XRD (X-ray diffraction) and SEM (scanning electron microscopy) were used to characterize the layer formed. These methods showed that the product consisted solely of pure elliptical ZnO grains.  相似文献   
3.
M. Vaezi  M. Moghiman 《Fuel》2011,90(2):878-885
Combustion of heavy fuel oils is a major source of production of particulate emissions and ash, as well as considerable volumes of SOx and NOx. Gasification is a technologically advanced and environmentally friendly process of disposing heavy fuel oils by converting them into clean combustible gas products. Thermochemical equilibrium modeling is the basis of an original numerical method implemented in this study to predict the performance of a heavy fuel oil gasifier. The model combines both the chemical and thermodynamic equilibriums of the global gasification reaction in order to predict the final syngas species distribution. Having obtained the composition of the produced syngas, various characteristics of the gasification process can be determined; they include the H2:CO ratio, process temperature, and heating value of the produced syngas, as well as the cold gas efficiency and carbon conversion efficiency of the process. The influence of the equivalence ratio, oxygen enrichment (the amount of oxygen available in the gasification agent), and pressure on the gasification characteristics is analyzed. The results of simulations are compared with reported experimental measurements through which the numerical model is validated. The detailed investigation performed in the course of this study reveals that the heavy oil gasification is a feasible process that can be utilized to generate a syngas for various industrial applications.  相似文献   
4.
In this work, different sol solutions with various titanium tetraisopropoxide (TIP)/glacial acetic acid ratios in 2‐propanol with 5 wt % poly(vinyl pyrrolidone) (PVP) (Mw = 360,000 g/mol) were prepared and electrospun. Composition of the prepared sols and as‐spun TiO2/PVP nanofibers were determined by Fourier transform infrared and Raman spectroscopy methods. Morphology of the electrospun TiO2/PVP nanofibers was studied by scanning electron microscopy and transmission electron microscopy (TEM) techniques. Rheometry measurements of the sol solutions showed decrease of viscosity upon the addition of TIP to the polymer solutions with constant polymer and acid concentrations. The sol solution having the lowest viscosity (at shear rate 10 s?1) but the highest TIP/glacial acetic acid ratio showed beaded nanofibers morphology when electrospun under 10 and 12 kV applied voltage while injection rate, needle tip to collector distance, and needle gauge were kept constant. However, smooth electrospun TiO2/PVP composite nanofibers with the average nanofibers diameters (148 ± 79 nm) were achieved under the same condition when applied voltage increased to 15 kV. TEM micrographs of the electrospun TiO2/PVP nanofiber showed that the TiO2 particles with continuous structure are formed at the middle of the nanofiber and distributed along its axis. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46337.  相似文献   
5.
A review on 3D micro-additive manufacturing technologies   总被引:1,自引:0,他引:1  
New microproducts need the utilization of a diversity of materials and have complicated three-dimensional (3D) microstructures with high aspect ratios. To date, many micromanufacturing processes have been developed but specific class of such processes are applicable for fabrication of functional and true 3D microcomponents/assemblies. The aptitude to process a broad range of materials and the ability to fabricate functional and geometrically complicated 3D microstructures provides the additive manufacturing (AM) processes some profits over traditional methods, such as lithography-based or micromachining approaches investigated widely in the past. In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-AM systems, 3D direct writing, and hybrid processes, and the key processes have been reviewed comprehensively. Principle and recent progress of each 3D micro-AM process has been described, and the advantages and disadvantages of each process have been presented.  相似文献   
6.
In this paper, the energy efficiency (EE) of a decode and forward (DF) relay system is studied, where two sources communicate through a half-duplex relay node in one-way and two-way relaying strategies. Both the circuitry power and the transmission power of all nodes are taken into consideration. In addition, three different coding schemes for two-way DF relaying strategy with two phases and two-way DF relaying with three phases are considered. The aim is to maximize the EE of the system for a constant spectral efficiency (SE). For this purpose, the transmission time and the transmission power of each node are optimized. Simulations are used to compare the EE–SE curve of different DF strategies with one-way and two-way amplify and forward (AF) strategies and direct transmission (DT), to find the best energy efficient strategy in different SE conditions. Analytical and simulation results demonstrate that in low SE conditions, DF relaying strategies are more energy efficient compared to that of AF strategies and DT. However, in high SE conditions, the EE of two-way AF relaying and DT strategy outperform some of the DF relaying strategies. In simulations, the impact of different circuitry power and different channel conditions on the EE–SE curves are also investigated.  相似文献   
7.
8.
9.
10.
Electrical properties and electronic structure of Bi1?xCaxFe1?yMnyO3?δ grown by pulsed-laser deposition on BaTiO3/SiO2/Si substrate were investigated. Results showed that Ca has drastic effect on symmetry of crystal and electrical poperties of BiFeO3. On the other hand, Mn revealed to have more radical effect on optical properties and energy gap of the compound. XPS results represented that although Ca tend to decrease Fe valence state, Mn tends to stabilize it at 3+ (at least in this concentrations). UV–visible study yielded bandgap of 2.51–2.81 eV (at 300 K) for different concentrations of Ca and Mn. UV–visible spectra also revealed sub-bandgap defect transitions at 2.2 and 2.4 eV. Slave-particle approach has also been applied to elucidate nature of the metal–insulator transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号