首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   31篇
  国内免费   3篇
电工技术   9篇
化学工业   82篇
金属工艺   1篇
机械仪表   5篇
建筑科学   27篇
能源动力   18篇
轻工业   53篇
水利工程   7篇
石油天然气   2篇
无线电   25篇
一般工业技术   32篇
冶金工业   2篇
原子能技术   6篇
自动化技术   49篇
  2024年   2篇
  2023年   3篇
  2022年   5篇
  2021年   20篇
  2020年   16篇
  2019年   24篇
  2018年   30篇
  2017年   23篇
  2016年   23篇
  2015年   26篇
  2014年   23篇
  2013年   44篇
  2012年   19篇
  2011年   24篇
  2010年   8篇
  2009年   8篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1980年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
1.
2.
3.
Lower Cretaceous Shurijeh–Shatlyk Formations host some of the main reservoirs in the Kopeh Dagh-Amu Darya Basin.Exploration in this area so far has focused on the development of structural traps, but recognition of stratigraphic traps in this area is of increasing importance. Integration of 3D seismic data with borehole data from thirteen wells and five outcrop sections was used to identify potential reservoir intervals and survey the hydrocarbon trap types in the East Kopeh Dagh Foldbelt(NE Iran). Analyses of horizontal slices indicated that the lower Shurijeh was deposited in a braided fluvial system.Generally, three types of channel were identified in the lower Shurijeh Formation: type 1, which is low-sinuosity channels interpreted to be filled with non-reservoir fine-grained facies; type 2, which is a moderately sinuous sand-filled channel with good prospectively; and type 3, which is narrow, high sinuosity channel filled with fine-grained sediments. Results indicate that upper Shurijeh–Shatlyk Formations were deposited in fluvial to delta and shallow marine environments. The identified delta forms the second reservoir zone in the Khangiran Field. Study of the stratigraphic aspects of the Shurijeh succession indicates that both lower and upper Shurijeh reservoirs are stratigraphic reservoir traps that improved during folding.  相似文献   
4.
Low terahertz (THz) radiation power and low efficiency are the well-known drawbacks of photoconductive antennas (PCAs). To increase THz-radiation power of PCAs, a dielectric structure with periodic low-temperature-grown GaAs strips is proposed. Transmitted power of the proposed structure is obtained from a theoretical model, and further confirmed by finite element simulations. Results show that the structure is capable to transmit into the substrate 90 % of the power of transverse magnetic wave with wavelength as wide as from 0.7 to 1.0 μm. Favorability of this property gets amplified when power transmission in a wide range of frequency bandwidth is desired, e.g., for optical pulse with short duration time incident to PCA, which generates carriers in the semiconductor that create THz emission. Furthermore, the proposed dielectric structure with periodic strips, the whole structure placed in between electrodes of PCA is considered, and analyzed by the existing photoconductive antenna equivalent circuit model, to see how power radiation changes. Interestingly, THz-radiation power enhancements of 70 and 20 % are evinced for, respectively, 20 and 150 mW incident optical powers as instances, as compared to PCA without strips in the gap area.  相似文献   
5.
Aiming for the simultaneous realization of constant gain, accurate input and output impedance matching and minimum noise figure (NF) over a wide frequency range, the circuit topology and detailed design of wide broadband low noise amplifier (LNA) are presented in this paper. A novel 2.5–3.1 GHz wide-band LNA with unique characteristics has been presented. Its design and layout are done by TSMC 0.18  \(\upmu \hbox {m}\) technology. Common gate stage has been used to improve input matching. In order to enhance output matching and reduce the noise as well, a buffer stage is utilized. Mid-stages which tend to improve the gain and reverse isolation are exploited. The proposed LNA achieves a power gain of 15.9 dB, a NF of 3.5 dB with an input return loss less than \(-\) 11.6, output return loss of \(-\) 19.2 to \(-\) 19 and reverse isolation of \(-\) 38 dB. The LNA consumes 54.6 mW under a supply voltage of 2 V while having some acceptable characteristics.  相似文献   
6.
In this article, the small-signal equivalent circuit model of SiGe:C heterojunction bipolar transistors (HBTs) has directly been extracted from S-parameter data. Moreover, in this article, we present a new modelling approach using ANFIS (adaptive neuro-fuzzy inference system), which in general has a high degree of accuracy, simplicity and novelty (independent approach). Then measured and model-calculated data show an excellent agreement with less than 1.68?×?10?5% discrepancy in the frequency range of higher than 300 GHz over a wide range of bias points in ANFIS. The results show ANFIS model is better than ANN (artificial neural network) for redeveloping the model and increasing the input parameters.  相似文献   
7.
Nowadays, environmental hazards caused by plastic wastes are a major concern in academia and industry. Utilization of biodegradable polymers derived from renewable sources for replacing common petroleum‐based plastics is a potential solution for reducing the problem. In this regard, starch has become one of the most promising alternatives to non‐biodegradable polymers for depleting plastic waste thanks to its low expense, abundance, renewability and biodegradability. However, the main drawbacks of starch are its poor processability, weak mechanical properties and severe hydrophilicity. In this work, thermoplastic starch (TPS) samples have been prepared using glycerol and sorbitol as co‐plasticizers in a laboratory co‐rotating twin screw extruder. Based on the mechanical test results, glycerol caused higher elongation to break but had lower tensile strength and elastic modulus compared to sorbitol plasticized starch. Fourier transform infrared spectroscopy and DSC results indicated that the hydrogen bond interaction between starch chains and plasticizers could be improved by replacing glycerol by sorbitol, which resulted in higher resistance against retrogradation proved by XRD results. TGA illustrated that the higher the sorbitol to glycerol ratio was, the more stable was the TPS. Using a proper amount of plasticizers (42 wt% total plasticizer, sorbitol to glycerol ratio 2:1) led to the preparation of a TPS sample with optimized properties including enhanced mechanical properties, high thermal stability, strong hydrogen bond formation and high resistance against retrogradation. © 2017 Society of Chemical Industry  相似文献   
8.
Two novel acrylate monomers, [5-(benzyloxy)-4-oxo-4H-pyran-2-yl]methyl acrylate and {1-[(5-(benzyloxy)-4-oxo-4H-pyran-2-yl)methyl]-1,2,3-triazol-4-yl}methyl acrylate were synthesized by the reaction of 5-benzyloxy-2-(hydroxymethyl)-4H-pyran-4-one and 5-(benzyloxy)-2-{[4-(hydroxymethyl)-1,2,3-triazol-1-yl]methyl}-4H-pyran-4-one with acryloyl chloride in the presence of triethylamine, respectively. These monomers were polymerized using 2,2-azobisisobutyronitrile (AIBN) as the initiator in N,N-dimethylformamide:14-dioxane (10:1) solution. The thermal behavior of the polymers was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The synthesized compounds were evaluated for their antibacterial and antifungal activites aganist bacteria and fungi using the disk diffusion method. The results indicated that some of these compounds demonstrated moderate to good antibacterial and antifungal activities.  相似文献   
9.
This study was performed to evaluate the properties of poly(vinyl alcohol) (PVA), gelatin, and PVA–gelatin dispersions and films enriched with Zataria multiflora essential oil (ZO). The results reveal that the ζ potential, particle size, and viscosity values and the antioxidant and antibacterial activities of the dispersions changed significantly with the addition of ZO to the polymer matrix. Changes in the properties of the dispersions suggested the presence of interactions between PVA or gelatin and ZO. Such interactions could affect the mechanical and water‐barrier properties of the films. ZO induced remarkable decreases in the tensile strength, elastic modulus, and swelling and increases in the elongation at break, solubility, and water‐vapor permeability of the films. Scanning electron microscopy analyses proved the impact of ZO on the film morphology, which affected the film properties, including the mechanical and water‐barrier properties. The addition of ZO to the polymer led to a coarse film microstructure because of the hydrophobic ZO aggregates, which produced discontinuities in the film matrix. ZO considerably increased the antioxidant and antibacterial activities of the dispersions. Pseudomonas aeruginosa was the most resistant bacteria. The improved antioxidant and antimicrobial activities of the PVA–ZO and gelatin–ZO indicated that such products could effectively be used as wound dressings. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45351.  相似文献   
10.
A significant portion of Iranian flat breads are produced in semi-industrial, indirect-heating ovens. Therefore, an efficient oven design and a proper selection of operating conditions are crucial to improve the product quality and reduce energy consumption. In the present study, a mathematical model is developed to simulate a semi-industrial, indirect-heating, continuous oven performance during contact baking of an Iranian flat bread, referred to as Taftoon. Individual modes of heat transfer are considered among various components of the baking system to estimate the system performance and the bread quality in terms of design and operating conditions. The predictions of this model are in good agreement with the experimental data. Numerical results indicate that conduction is the primary heat transfer mechanism. Furthermore, the effects of dough thickness, conveyer speed, and input air velocity on the quality of the bread are studied and appropriate ranges for the parameters are determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号