首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
化学工业   28篇
机械仪表   2篇
能源动力   1篇
轻工业   3篇
水利工程   1篇
无线电   3篇
一般工业技术   11篇
冶金工业   9篇
  2020年   2篇
  2015年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  1999年   1篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1979年   2篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
To test the hypothesis that muscle O2 uptake (V(O2)) on-kinetics is limited, at least in part, by peripheral O2 diffusion, we determined the V(O2) on-kinetics in 1) normoxia (Control); 2) hyperoxic gas breathing (Hyperoxia); and 3) hyperoxia and the administration of a drug (RSR-13, Allos Therapeutics), which right-shifts the Hb-O2 dissociation curve (Hyperoxia+RSR-13). The study was conducted in isolated canine gastrocnemius muscles (n = 5) during transitions from rest to 3 min of electrically stimulated isometric tetanic contractions (200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% peak V(O2)). In all conditions, before and during contractions, muscle was pump perfused with constantly elevated blood flow (Q), at a level measured at steady state during contractions in preliminary trials with spontaneous Q x Adenosine was infused intra-arterially to prevent inordinate pressure increases with the elevated Q x Q was measured continuously, arterial and popliteal venous O2 concentrations were determined at rest and at 5- to 7-s intervals during contractions, and V(O2) was calculated as Q x arteriovenous O2 content difference. PO2 at 50% HbO2 saturation (P50) was calculated. Mean capillary PO2 (Pc(O2)) was estimated by numerical integration. P50 was higher in Hyperoxia+RSR-13 [40 +/- 1 (SE) Torr] than in Control and in Hyperoxia (31 +/- 1 Torr). After 15 s of contractions, Pc(O2) was higher in Hyperoxia (97 +/- 9 Torr) vs. Control (53 +/- 3 Torr) and in Hyperoxia+RSR-13 (197 +/- 39 Torr) vs. Hyperoxia. The time to reach 63% of the difference between baseline and steady-state V(O2) during contractions was 24.7 +/- 2.7 s in Control, 26.3 +/- 0.8 s in Hyperoxia, and 24.7 +/- 1.1 s in Hyperoxia+RSR-13 (not significant). Enhancement of peripheral O2 diffusion (obtained by increased PcO2 at constant O2 delivery) during the rest-to-contraction (60-70% of peak V(O2)) transition did not affect muscle V(O2) on- kinetics.  相似文献   
2.
The factors affecting the adsorption and desorption kinetics in a TEOM are reviewed in detail with particular attention given to the assumptions required to obtain physical transport parameters from the data. Two models are presented to simulate TEOM adsorption data in the case that concentration differences down the catalyst bed can be neglected, as is appropriate when the amount of catalyst used is small, the carrier gas flowrate is large, and/or the adsorbate partial pressure is low. In the first model, the effective diffusion coefficient, De, is taken to be constant. In the second model, the effective diffusion coefficient is assumed to obey the Darken equation, De=D0/(1−θ). The TEOM results obtained on n-hexane, n heptane, n-octane, toluene and p-xylene on a commercial FCC catalyst and on pure rare-earth exchanged zeolite Y under non-reacting conditions (373-) are analysed in detail. It is found that intracrystalline diffusion is not the limiting factor affecting the overall rates of adsorption and desorption for the systems studied. Instead, it is the transport of molecules between the adsorbed and vapour phases at the edge of zeolite crystallites that is the limiting transport step affecting the overall kinetics. For the FCC catalyst, the limiting step is the transport of molecules at the zeolite-matrix interface rather than, say, the matrix-vapour interface. Local rate constants for the desorption of the hydrocarbons at the rate-controlling interface have been obtained.  相似文献   
3.
NMR has long been established as an in situ technique for studying the solid-state structure of catalysts and the chemical processes occurring during catalytic reactions. Increasingly, pulsed field gradient (PFG) NMR and magnetic resonance imaging (MRI) are being exploited in chemical reaction engineering to measure molecular diffusion, dispersion and flow hydrodynamics within reactors. By bringing together NMR spectroscopy, PFG NMR and MRI, we are now able to probe catalysts and catalytic processes from the angstrom-to-centimeter scale. This article briefly reviews current activities in the field of MRI studies applied to catalysts and catalytic reactors. State-of-the-art measurements, which can already be used in real reactor design studies, are illustrated with examples of single-phase flow with and without chemical reaction in a fixed-bed reactor. The ability to obtain high spatial resolution (< 200μm) in images of the internal structure and flow field within reactors is demonstrated, and the potential uses of these data in reactor design and understanding bed fouling phenomena are discussed. In particular, MRI has produced the first detailed measurements of the extent of heterogeneity in the flow field within fixed-bed reactors. The example of a fixed-bed esterification process is used to show how NMR spectroscopy and MRI techniques can be combined to provide spatially resolved information on both hydrodynamics and chemical conversion within a process unit. The emerging area of ultrafast MRI is then highlighted as an area of particular interest. Recent advances have demonstrated that it is possible to record 2D images over timescales of ~100ms in the magnetically heterogeneous environments typical of heterogeneous chemical reactors. These advances open up opportunities to image many unsteady state processes for the first time. Examples are given of real-time visualization of bubble-train flow in a ceramic monolith and exploring the stability of the gas–liquid distribution as a function of liquid flow rate in a trickle-bed reactor.  相似文献   
4.
Simulation of packed bed reactors using lattice Boltzmann methods   总被引:1,自引:0,他引:1  
Lattice Boltzmann (LB) methods are used to simulate hydrodynamics, reaction and subsequent mass transfer in a disordered packed bed of catalyst particles at sub-pore length-scales. In contrast to previous studies, a variety of modifications are introduced in the LB method enabling particle Pe numbers up to 108, and hence realistic values of diffusivity, to be accessed. These include decoupling the hydrodynamics from mass transfer and the use of a rest fraction in the LB formulation of mass transfer. In addition the mass transfer simulations are modified to permit spatially varying values of diffusivity, essential to differentiate between intra- and inter-particle diffusivity (Dintra and Dinter, respectively). The simulation method is applied to both a disordered and ordered 2D packing for a range of Pe (15.6-1557.8) and Re (0.16-1.56) numbers, as well as various ratios of Dintra/Dinter (0-1), whilst simulating an esterfication reaction catalyzed by an ion-exchange resin. The value of Dintra is found to have limited effect, whilst reducing Pe number results in a considerable increase in overall conversion. The simulation method is then applied to a 3D lattice for which experimental conversion data is available. This experimental data is straddled by the simulation case of Dintra=0 and Dintra=Dinter, as expected.  相似文献   
5.
Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) and microimaging experiments have been performed to study the diffusion of liquid alkanes into a variety of semicrystalline polyethylene (PE) samples. The results highlight the importance of the crystalline phase in controlling the diffusion process in terms of both the geometric impedance imposed by the presence of impenetrable crystals and their effect on the mobility of the polymer chains comprising the amorphous material through which the penetrants migrate.  相似文献   
6.
NMR spectroscopy is now a well‐established technique for the in situ study of surface chemistry and the chemical processes occurring during catalytic reactions. Developments in probe design are making the sample environments ever closer to the operating conditions of the catalyst in industrial use. In parallel with these advances there is an increasing interest in the application of field gradient magnetic resonance techniques, namely pulsed gradient spin echo (PGSE) NMR and magnetic resonance imaging (MRI), to in situ studies of mass transport processes in catalysts and reactors. An overview of the recent developments in in situ NMR spectroscopy, PGSE NMR and MRI studies in application to catalysis and reaction engineering is presented and the potential of these techniques in the numerical modelling of catalytic processes and reactor design is highlighted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
The catalytic dehydrogenation (DH) and oxidative dehydrogenation (ODH) of light alkanes are of significant industrial importance. In this work both carbonaceous material deposited on VOx/Al2O3 catalysts during reaction and unsupported carbon nanofibres (CNFs) are shown to be active for the dehydrogenation of butane in the absence of gas-phase oxygen. Their activity in these reactions is shown to be dependent upon their structure, with different reaction temperatures yielding structurally different coke deposits. Terahertz time-domain spectroscopy (THz-TDS), among other techniques, has been applied to the characterisation of these deposits – the first time this technique has been employed in coke studies. TEM and other techniques show that coke encapsulates the catalyst, preventing access to VOx sites, without a loss of activity. Studies on CNFs confirm that carbonaceous materials act as catalysts in this reaction. Carbon-based catalysts represent an important new class of potential catalysts for DH and ODH reactions.  相似文献   
8.
J. Kolz  J. Mitchell  L.F. Gladden 《Polymer》2010,51(18):4103-4109
Nuclear magnetic resonance transverse T2 relaxation time has proven to be a valuable parameter for characterizing liquid/polymer interactions. This measurement is applicable to many food, personal care, and cosmetic products that contain multi-component liquid mixtures. Here, we investigate the interactions of corn starch with water/glycerol mixtures of different weight compositions and explore liquid exchange dynamics; such a system is relevant to the personal care industry. We use a combination of chemical shift resolved 1H T2 relaxation measurements and corresponding two-dimensional T2 relaxation exchange experiments using both a conventional experimental protocol and a modified method with the addition of NMR chemical shift selectivity. Two relaxation regimes were evident for the hydroxyl 1H (found in both water and glycerol) whilst three relaxation regimes are evident for the aliphatic glycerol 1H associated here with strongly bound, weakly bound, and free (bulk) liquid, respectively. At higher water contents preferential absorption of glycerol was evident. T2-T2 exchange maps with a range of storage times reveal molecular exchange rates between all three regimes due to self-diffusion. Rapid exchange of water between the bulk and bound locations was evident in the case of pure water. Exchange rates for hydroxyl 1H was considerably reduced by the inclusion of glycerol.  相似文献   
9.
Book Reviews     
  相似文献   
10.
Details of a unique computer controlled multichannel fluorometer are given. Features include: a novel optical system enabling simultaneous acquistion of excitation and emission data over broad spectral ranges, a highly sensitive silicon intensified target (SIT) vidicon detector, and a video interface to a minicomputer allowing data acquisition at the standard television rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号