首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   1篇
  国内免费   1篇
电工技术   1篇
化学工业   8篇
金属工艺   2篇
建筑科学   2篇
能源动力   16篇
轻工业   1篇
水利工程   3篇
无线电   1篇
一般工业技术   20篇
冶金工业   14篇
自动化技术   3篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   6篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   4篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1979年   2篇
  1969年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
The current work analyzes the effect of the dynamic change in strain rate during tensile loading of a mild steel on its mechanical and stress corrosion behavior in 3.5 wt.% NaCl solution. The sample experiences high strain rate (10?2 s?1) up to 10, 15 and 20% of total deformation and then very low strain rate of 10?6 s?1 till fracture without any unloading in between. The behavioral characteristics of the steel under these circumstances are found to be different from that exhibited during complete loading till fracture both at high and slow strain rates separately. Total strain increases with the increase in the strain at which change in strain rate happens, and this is attributed to the generation of large number of dislocations at higher strain rate and subsequently release of dislocation at low strain rate during change over due to more time available for dynamic recovery. This observation is common for both in air and corrosive environment. One unique observation in this study is the higher total strain and lower strength observed during dynamic change in strain rate in the corrosive environment compared to that in air, which is attributed to the hydrogen-induced plasticity mechanism.  相似文献   
2.
The price of oil could play a significant role in influencing the expansion of biofuels, but this issue has yet to be fully investigated in the literature. Using a global computable general equilibrium (CGE) model, this study analyzes the impact of oil price on biofuel expansion, and subsequently, on food supply. The study shows that a 65% increase in oil price in 2020 from the 2009 level would increase the global biofuel penetration to 5.4% in 2020 from 2.4% in 2009. If oil prices rise 150% from their 2009 levels by 2020, the resulting penetration of biofuels would be 9%, which is higher than that would be caused by current mandates and targets introduced in more than forty countries around the world. The study also shows that aggregate agricultural output drops due to an oil price increase, but the drop is small in major biofuel producing countries as the expansion of biofuels would partially offset the negative impacts of the oil price increase on agricultural outputs. An increase in oil price would reduce global food supply through direct impacts as well as through the diversion of food commodities and cropland towards the production of biofuels.  相似文献   
3.

Scientists at the Mississippi State University Diagnostic Instrumentation and Analysis Laboratory and the Idaho National Engineering and Environmental Laboratory (INEEL) have developed an expert system for a noninvasive characterization of containerized radiological waste. The characterization of the containers is necessary for determining their proper disposition. Three prototypes were developed, with each using a different method of handling uncertainty - a fuzzy system, a Bayesian network system, and a neural network system. The performance of each expert system was assessed to determine how well it modeled the decisions made by the INEEL domain expert. The prototype systems were also analyzed to measure the agreement in their decisions, the domain expert's decisions, and the decisions made by two additional experts. The neural network prototype was further analyzed to determine how consistent it was in its assessments. This paper describes the analysis of the performance of the three expert system prototypes.  相似文献   
4.
This paper critically reviews existing energy demand forecasting methodologies highlighting the methodological diversities and developments over the past four decades in order to investigate whether the existing energy demand models are appropriate for capturing the specific features of developing countries. The study finds that two types of approaches, econometric and end-use accounting, are commonly used in the existing energy demand models. Although energy demand models have greatly evolved since the early seventies, key issues such as the poor–rich and urban–rural divides, traditional energy resources and differentiation between commercial and non-commercial energy commodities are often poorly reflected in these models. While the end-use energy accounting models with detailed sectoral representations produce more realistic projections as compared to the econometric models, they still suffer from huge data deficiencies especially in developing countries. Development and maintenance of more detailed energy databases, further development of models to better reflect developing country context and institutionalizing the modelling capacity in developing countries are the key requirements for energy demand modelling to deliver richer and more reliable input to policy formulation in developing countries.  相似文献   
5.
Low dislocation density single crystals of nickel have been grown at high ambient pressure by the Czochralski method. X-ray Laue picture shows that the crystals are strain-free. The dislocation density was determined to be <103/cm2 by the etching procedure. It was found that the necking and cone regions are very critical in the dislocation introduction in the crystals. An increase in the ambient pressure used during the growth seems to aid the crystal quality.  相似文献   
6.
Drawbacks of poly(methyl methacrylate) (PMMA)‐based bone cement as a grouting agent for in vivo fixation of orthopedic and dental implants such as considerable low mechanical strength have been improved using nanotechnology. Bone cement‐layered silicate nanocomposites have been prepared without any heat treatment in the presence of polar (dimethyl formamide, DMF) and nonpolar (benzene) solvents. Solvents have been removed completely from the bone cement after its preparation. Nanostructure is very much dependent on the solvent used for nanocomposite preparation, and benzene‐based nanocomposites are highly intercalated, whereas DMF‐based nanocomposites do not exhibit intercalation. Thermal stability of bone cement has improved in the presence of nanoclays. The relative enhanced interaction in case of benzene‐based nanocomposites has been shown through FTIR and UV–vis studies. The significant improvement in modulus and toughness of bone cement has been demonstrated in the presence of minimum amount of nanoclay for benzene‐based nanocomposites, whereas no change in modulus and reduced toughness have been observed for DMF‐based nanocomposites. The decrease of contact angle has been witnessed with increasing nanoclay concentration indicating better hydrophilic materials suitable for biomedical applications for greater cell growth. The reason for varying property enhancement in different solvents has been discussed considering the polarity effect and interactions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
7.
Tube-in-tube heat exchangers are widely used in food processing industries and wastewater treatment for both heating and cooling. Enhancement techniques namely active, passive, and compound are developed to reduce the thermal resistance in heat exchangers by improving convective heat transfer with or without increase in surface area. The present experimental study is aimed at analyzing the influence of vibrations on the convective heat transfer of a parallel flow tube-in-tube heat exchanger. The heat exchanger is placed in horizontal position and is subjected to transverse vibrations under turbulent fluid flow conditions. Experiments were performed at four frequencies (20, 40, 60, and 100 Hz), three amplitudes (1, 2, and 3 m/s2), and three vibration generator positions along its length, in the Reynolds number range of 10 710 to 21 420. An enhancement in Nusselt number is found with vibration than without vibration throughout the entire range of Reynolds numbers. A maximum enhancement of 33% at 40 Hz frequency, 3 m/s2 amplitude, and vibration generator position at three-fourth of the tube length was observed. Empirical correlations are developed for Nusselt number to determine the heat transfer coefficient with vibration with an error of ±10%.  相似文献   
8.
In this paper, unsteady flow into a multiaquifer well due to stream stage changes and varying pumping rate is analyzed. The well is located at such a distance that the radius of influence touches the stream boundary; hence, pumping induces seepage from the stream to the aquifer. The discrete kernel approach, which is based on Duhamel’s principle, has been applied to find the interaction among stream, aquifers, and pumping well for constant as well as varying stream stage. The analytical expression for a damped sinusoidal flood wave passing in a fully penetrating stream has been used for obtaining the aquifer response. By applying image-well theory, the finite aquifer and well system has been transformed into an infinite aquifer and well system. The principle of superposition, which is applicable to a linear system, has been used to analyze the interaction processes among the three components of the system. The interaction of the stream, aquifers, and well with each other are analyzed during pumping, after stoppage of pumping, as well as during passage of a flood wave in the stream.  相似文献   
9.
10.
A quasi‐3D numerical model is developed to study the problem of laminar natural convection and radiation heat transfer from a vertical fin array. An enclosure is formed by two adjacent vertical fins and vertical base in the fin array. Results obtained from this enclosure are used to predict heat transfer rate from a vertical fin array. All the governing equations related to fluid in the enclosure, together with the heat conduction equation in both fins are solved by using the Alternating Direction Implicit (ADI) method for getting the temperatures along the height of the fin and the temperature of the fluid in the enclosure. Separate analysis is carried out to calculate the heat transfer rates from the end fins in the fin array. A numerical study has been carried out for the effect of fin height, fin spacing, fin array base temperature, and fin emissivity on total heat transfer rates and effectiveness of the fin array. The numerical results obtained for an eight‐fin array show good agreement with the available experimental data. Results show that the fin spacing is the most significant parameter and there exists an optimum value for the fin spacing for which the heat transfer rate from the fin array is maximum. Correlations are presented for predicting the total heat transfer rate, average Nusselt number, and effectiveness of the fin array. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20360  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号