首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学工业   37篇
金属工艺   2篇
一般工业技术   1篇
冶金工业   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
2.
Hydrogen-deuterium exchange in methanol over Al2,O3, platinum black and alumina supported platinum catalysts have been investigated by means of mass spectrometry. The hydrogen-deuterium exchange proceeds faster over Pt/Al2O3 than either platinum black or alumina, and the rate (as well as the rate of dimethyl ether formation) increases with platinum dispersion. From the reactions CH3OH + D2, CD3OH + H2 and CD3OH + D2 the different exchange rates of the CH3 and OH groups (R1, and R2, respectively) were determined. For all catalysts studied the exchange in the OH group was two or three orders of magnitude faster than CH3 group. Exchange in the methyl group needs higher activation energy: R1/R2 ratio increases with temperature. Catalyst pretreatment has an important effect: higher activation temperature results in a higher R1/R2 ratio.

A methematical method is suggested for the evaluation of exchange rates of a molecule with two different types of hydrogen and a model is given for the interpretation of measured data: methanol is activated mainly on Al2,O3, forming surface methoxide groups on the Lewis acidic sites. This methoxide can react with deuterium atoms having been activated over platinum sites. With increasing dispersion the metal-support interface is enhanced which leads to higher rate of exchange.  相似文献   
3.
Guczi  L.  Beck  A.  Horváth  A.  Horváth  D. 《Topics in Catalysis》2002,19(2):157-163
Different methods to prepare supported metal nanoparticles of uniform size are discussed. (i) Supported ruthenium particles were generated from Ru and Ru-Fe bimetallic molecular metal carbonyl cluster precursors (MCC). (ii) Gold nanoparticle formation in the supercage of Y zeolite was studied on Au/NaY, Au/HY and Au-Fe/HY system. (iii) Palladium nanoparticles were grown in liquid phase then deposited on an SiO2 support or they were grown on the support surface in a solid-liquid interfacial layer. The particle size control was more efficient in the latter two cases than in the preparation starting from MCC.  相似文献   
4.
Small Co particles were prepared by sputter etching of a 4–5 nm thick island-like Co film deposited on Si(111) substrate. The density of states (DOS) of the valence band was measured by means of ultraviolet photoemission (UPS) during the sputter etching to monitor the formation of small Co particles. It was found that at a given thickness of the Co island the Fermi level was shifted by 1.8-1.9 eV toward higher binding energy and theDOS decreased or no states were detectable at the Fermi level. This effect was explained by the formation of small Co particles with electronic structure which is significantly different from that of the bulk Co.  相似文献   
5.
Bimetallic AuPd catalysts were prepared by deposition of bimetallic aqueous sols formed in different ways: (i) co-reduction of the precursor Au and Pd ions by Na-citrate/tannic acid mixture, (ii) reduction of Au(III) ions onto preformed Pd sol, and (iii) reduction of Pd(II) ions onto a preformed Au sol. The Au/TiO2 and Pd/TiO2 samples as references were prepared from their respective sols. The structure of the samples was characterized by XRF, XRD, XPS, TEM and CO chemisorption both in the as-prepared state and after calcination and reduction. The catalytic activities of the calcined/reduced catalysts in the CO oxidation were compared. The presence of bimetallic crystalline phases was evidenced in all three samples both in the as prepared and calcined/reduced states, however, various extents of Pd surface enrichment were determined. The catalytic activity of the bimetallic samples regardless of the preparation method, is about the same as that of the mixture of the monometallic samples. No significant synergism is suggested in the present bimetallic samples.  相似文献   
6.
Size reduction of metal particles results in the formation of nanoparticles having short-range order and metastable state. Modeling of the nanoparticles can be obtained by various approaches. The major arrangement is the use of a model support on which metal nanoparticles can be created in a controlled way. Another approach is the use of amorphous alloy as precursor in which the ensemble of active sites (normally small metal nuclei embedded into amorphous matrix) is created. The modeling will be illustrated through the paper using SiO2/Si(100) on which several transition metals will be deposited by pulsed laser deposition. Ultraviolet photoelectron spectroscopic technique as well as transmission electron microscopic technique will be utilized in characterization of the samples. CO chemisorption and CO oxidation as test reaction will be applied to show the connection between catalytic behavior and electronic properties or morphology of nanoparticles.  相似文献   
7.
Direct decomposition of N2O and the reduction of N2O with CH4 over Ga/H-ZSM-5 and Mo/Ga/H-ZSM-5 (Si/Al = 40) catalysts in a plug flow reactor under steady-state conditions as well as by temperature programmed surface reaction (TPSR) have been investigated. Ga ions were ion-exchanged from liquid phase while Mo was deposited onto the Ga/H-ZSM-5 sample using incipient wetness technique. The catalysts were characterized by means of XRF, XPS, TPR, CO chemisorption, TEM and EDS. The N2O forms redox centers in the Mo/Ga/H-ZSM-5 catalysts at elevated temperatures, which are extremely active in the reaction with CH4 already at around 373 K. Addition of Mo to the Ga/H-ZSM-5 decreased the T50 temperature in the N2O decomposition and reduction of N2O with CH4 from 819 to 787 K and from 755 to 646 K, respectively. The oxidation/reduction of the Mo/Ga/H-ZSM-5 sample is more favoured in the interaction with N2O/CH4 as compared to that using O2/H2 and the mechanism of the redox reactions might also be different. The reduction of N2O with CH4 cannot be described with the Mars–van Krevelen redox mechanism, but by the participation of CH4 via MoGa–OCH3 species in a complex oxygen transfer mechanism is proposed at which N2O does not directly reoxidise the reduced active centers.  相似文献   
8.
Methane conversion to higher hydrocarbons in a “one‐step” process under non‐oxidative conditions at low temperature was here first introduced and investigated over Co–Pd/SiO2 catalysts at 250°C as a function of hydrogen concentration in helium and of catalyst composition. A maximum in the production of C2+ hydrocarbons including aromatics (benzene and toluene) was observed at 1.3 vol% H2/He mixture in which one pulse of methane was introduced. Additional hydrogenation with the same H2/He mixture at 400°C was efficient to remove the larger hydrocarbon fragments already existing on the surface. On pure Pd/SiO2 the one‐step process is not so efficient as on cobalt‐rich samples, but in the latter case the hydrocarbon removal is the most efficient during high‐temperature hydrogenation. It was found that methane conversion in the one‐step process is at least 2.5 times greater than that measured in the “two‐step” process and, in some cases, 80% of the methane introduced is converted to larger hydrocarbons. The results are discussed in terms of the hydrogen coverage ensuring the optimum hydrogen content in the surface CHx species leading to chain growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
H-AITS-1 zeolite with Si/Ti = 50 and Si/Al = 50 was employed in preparing catalyst samples by ion-exchange and impregnation with a copper nitrate solution to obtain 0.24–1.15 wt.% and 1.5, 2 and 2.5 wt.% Cu loading, respectively. The catalytic properties for the NO decomposition were compared with that of Cu-ZSM-5 (Si/Al = 25 with 2 wt.% Cu loading) and similarity was found between the AITS-1 based samples and Cu-ZSM-5. Due to the higher acidity, the activity at 500°C per total copper atoms (an apparent turnover frequency, TOF) was significantly higher over Cu based AITS-1 samples being 2–3 × 10−3 s−1 as compared to 1 × 10−3 s−1 measured on Cu-ZSM-5. For the ion-exchanged Cu-AITS-1 there was an increase in TOF with increasing copper content, whereas on the impregnated samples a decrease in TOF was found. On all catalysts there was a maximum in the NO conversion at 500–550°C. The amount of NO per copper atom measured by temperature programmed desorption (TPD) was about the same as that on Cu-ZSM-5 and the features of the TPD were also similar. At the first contact of the catalyst at 500°C with the 2 vol% NO/Ar gas a transient N2O formation and a considerable delay in the O2 formation was observed. This could, however, be reproduced only on fresh catalyst, while all further transients showed different but reproducible features using the same sample.  相似文献   
10.
Ag/TiO2 catalysts with different Ag loadings (2, 4, 7 and 10% (w/w)) have been prepared by means of co-precipitation of Ag- and TiO-oxalates followed by temperature programmed oxidation (TPO). The catalysts were subjected to CO oxidation in a flow reactor at atmospheric pressure and temperatures up to 573 K. Best conversion performance was obtained in a CO/O2 = 1:1 mixture over 10% Ag/TiO2 for which the temperature of 50% CO conversion was T 50 = 333 K. The initial reaction rates were determined in a circulation reactor at low conversions and apparent activation energies between 13 and 25 kJ/mol were found for all catalysts. Transmission electron microscopy shows a broad range of nano-sized Ag particles on TiO2 (nearly pure anatase).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号