首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
化学工业   11篇
能源动力   1篇
一般工业技术   2篇
冶金工业   1篇
  2014年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有15条查询结果,搜索用时 93 毫秒
1.
2.
The effect of various monomer addition policies on the composition of a copolymer synthesized by semicontinuous emulsion copolymerization, using monomes with widely different ractivity ratios, was studied by mathematical simulation. Three policies were considered. In the first, both monomers are added under starved conditions. In the second, the reactor is initially chanrged with all of the less reactive monomer plus the amount of the mono reactive monomer needed to initially form a copolymer with the desired composition. Subsequent addition of the remaining monomer is made at a flow rate that ensures the formation of a copolymer of of constant composition. In the third, the initial charge is the same as in the previous case with subsequent addition of the remaining monomer at a constant fed rate. The copolymer composition obtained under starved conditions was almost constant in the cases where low feed rates were used. however, this led to long process times. For the second policy, a mathematical model ws developed to calculated the necessary addition rate of the more reactive monomer, that ensured the production of a copolymer of constant composition. It was found that the resulting process time was one third of that corresponding to the starved process. When variations in a copolymer composition were allowed, the third addition polycy might prove to be a good alternative to the second addition polyce because of iots shorter process time and teh advantage of working with teh constant feed rate.  相似文献   
3.
The seeded emulsion copolymerization of n‐butyl acrylate and styrene in a weight ratio of 50/50 was investigated. The effect of the type of process (batch vs. semicontinuous) and the amounts of initiator and emulsifier charged into the reactor on the time evolution of the fractional conversion, number of polymer particles, and weight‐average molecular weight (Mw) was analyzed. It was found that the Mw depends to a slight extent on the type of process and the emulsifier concentration and to a larger extent on the initiator concentration. The molecular weight distributions (MWDs) and the gel content of the final latexes were also analyzed. In the absence of chain transfer agents (CTAs), the fraction of gel was higher in the semicontinuous processes. It was also found that the gel content increased with increasing initiator concentration in the recipe. The addition of 1 wt % CTA avoided gel formation and led to an important reduction of the Mw. Nevertheless, the MWDs presented a shoulder or even a second peak at high molecular weights that was due to reactions of chain transfer to the polymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1918–1926, 2003  相似文献   
4.
Summary: The microstructure of the polymer synthesized by seeded semicontinuous emulsion copolymerization of AAEMA was investigated. It was found that the neutralization of the latexes with ammonia to protect acetoacetoxy functionality against hydrolysis during storage had a remarkable effect on the gel content. A base catalyzed Michael addition reaction between acetoacetoxy groups and terminal double bond (TDB) is proposed as responsible for the chain precrosslinking observed. The presence of TDB in the latexes was demonstrated by means of 1H NMR. Moreover, the chain precrosslinking affected the subsequent crosslinking reaction of the latex with diamines hindering chain interdiffusion and yielding poorer mechanical properties.

Michael addition between AcAc functional groups and TDB, and final gel content of the MMA/BA/MAA latexes with different amounts of AAEMA.  相似文献   

5.
An approach for the calculation of the optimal monomer addition policies for polymer composition control in emulsion terpolymerization is presented. The model allows the calculation of the composition of the initial charge of the reactor and the time dependent monomer addition rates. Monomer addition strategies for reactors with limited capacity for heat removal were obtained. A heat removal rate dependent on the latex solids content was considered. Simulation showed that the present approach leads to the production of homogeneous terpolymers in process times which are significantly shorter than that required by the classical starved process to produce a terpolymer of similar homogeneity.  相似文献   
6.
A series of LaBO3 (B = Cr, Co, Ni, Mn) and La0.9K0.1MnO3+δ perovskites have been prepared and tested as catalysts in the combustion of methyl ethyl ketone (MEK) at two concentration levels in air. Complete MEK conversion can be achieved for the most concentrated stream (1250 ppmv, WHSV = 425 h−1) at temperatures between 270 °C (manganite) and 345 °C (chromite). Activity is governed by the nature of the cation in position B and related to reducibility, being comparable for manganite activity with that of the much more expensive Pt-supported catalysts. Doping with K of lanthanum manganite produces an increase in surface area, as well as the formation of non-stoichiometric oxygen and a greater proportion of Mn4+ on the surface. All these factors may have a role in increasing its activity for catalytic combustion. Catalytic results suggest a marked influence of MEK concentration on the combustion rate. MEK oxidation to CO2 goes through acetaldehyde as intermediate product; methyl vinyl ketone and diacetyl (2,3-butanedione) were also formed, albeit in very low amounts. Nevertheless, acetaldehyde yield is zero at complete conversion, so the combustion of MEK can be carried out over these perovskite systems with 100% selectivity for CO2.  相似文献   
7.
The modifications performed to convert a gasoline carbureted engine-generator set to a bi-fuel (hydrogen/gasoline) electronic fuel-injected power unit are described. Main changes affected the gasoline and gas injectors, the injector seats on the existing inlet manifold, camshaft and crankshaft wheels with their corresponding Hall sensors, throttle position and oil temperature sensors as well as the electronic management unit. When working on gasoline, the engine-generator set was able to provide up to 8 kW of continuous electric power (10 kW peak power), whereas working on hydrogen it provided up to 5 kW of electric power at an engine speed of 3000 rpm. The air-to-fuel equivalence ratio (λ) was adjusted to stoichiometric (λ = 1) for gasoline. In contrast, when using hydrogen the engine worked ultra-lean (λ = 3) in the absence of connected electric load and richer as the load increased. Comparisons of the fuel consumptions and pollutant emissions running on gasoline and hydrogen were performed at the same engine speed and electric loads between 1 and 5 kW. The specific fuel consumption was much lower with the engine running on hydrogen than on gasoline. At 5 kW of load up to 26% of thermal efficiency was reached with hydrogen whereas only 20% was achieved with the engine running on gasoline. Regarding the NOx emissions, they were low, of the order of 30 ppm for loads below 4 kW for the engine-generator set working on hydrogen. The bi-fuel engine is very reliable and the required modifications can be performed without excessive difficulties thus allowing taking advantage of the well-established existing fabrication processes of internal combustion engines looking to speed up the implementation of the energetic uses of hydrogen.  相似文献   
8.
Magnesium alloys are generating interest in the automotive and aeronautic industries due to their low density and potential to reduce gross vehicular weight. However, the formability of these alloys is poor and they are very difficult to be formed at room temperature due to their strong basal texture in rolled form. In this paper, the potential of magnesium alloy sheets to be processed at warm conditions is studied for four different forming technologies: incremental forming (IF), deep drawing (DD), hydroforming (HF), and electromagnetic forming (EMF). Forming mechanisms and process window are experimentally characterized by monitoring different process parameters. Special focus is made on the influence of the forming temperature and the strain rate. Thus, experiments at temperatures from room to 523 K (250 °C) and a wide range of strain rates, between 10?3 up to 10s?1 according to each process nature and scope, are conducted. It is observed that, even the inherent forming rate range of each process vary considerably, increasing forming temperature increases formability for all of these forming processes. In the other hand, an opposing effect of the strain rate is observed between the quasi-static processes (IF, DD, and HF) and the high speed process (EMF). Thus, a detrimental effect on formability is observed when increasing strain rate for quasi-static processes, while a mild increase is observed for EMF.  相似文献   
9.
A method to determine the minimum time monomer addition policy for composition control in emulsion polymerization systems when technical grade monomers are used is presented. The method involves a series of semicontinuous emulsion copolymerizations carried out under semistarved conditions. The values of the propagation rate constants, reactivity ratios and monomer partition coefficients are required to use the approach. The method is model-independent and does not require extremely accurate measurements of the particle size. The method was checked in the methyl methacrylate-ethyl acrylate seeded emulsion copolymerization. The monomers contained 4-methoxyphenol as inhibitor. It was found that the iterative approach converged rapidly.  相似文献   
10.
A study is presented of the kinetics and oxidation selectivity of methyl-ethyl-ketone (MEK) in air over bimetallic PdOx(0–1 wt% Pd)–MnOx(18 wt% Mn)/Al2O3 and monometallic PdOx(1 wt% Pd)/Al2O3 and MnOx(18 wt% Mn)/Al2O3 catalysts. Reaction rate data were obtained at temperatures in the 443–523 K range and for MEK partial pressures in the reactor feed of between 6.5 and 126.6 Pa. Products of both MEK combustion and partial oxidation reactions were found. Monometallic Pd/Al2O3 was the most selective catalyst for complete oxidation whereas the partial oxidation of MEK in the presence of manganese oxides was significant. The maximum yield for the partial oxidation products (acetaldehyde, methyl-vinyl-ketone, and diacetyl) was always below 10%. Kinetic studies showed that the rates of CO2 formation over PdOx/Al2O3 were well-fitted by the surface redox Mars–van Krevelen (MvK) kinetic expression and also by a Langmuir–Hinshelwood (LH) model derived after considering the surface reaction between adsorbed MEK and oxygen as the rate-determining step. In the case of the Mn-containing catalysts the MvK model provides the best fit. Irrespective of the model, the kinetic parameters for the bimetallic Pd–Mn catalysts were between the values obtained for the monometallic samples, suggesting an additive rather than a cooperative effect between palladium and manganese species for MEK combustion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号