首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11008篇
  免费   878篇
  国内免费   357篇
电工技术   443篇
综合类   467篇
化学工业   1875篇
金属工艺   605篇
机械仪表   725篇
建筑科学   571篇
矿业工程   213篇
能源动力   336篇
轻工业   665篇
水利工程   178篇
石油天然气   373篇
武器工业   34篇
无线电   1573篇
一般工业技术   1701篇
冶金工业   918篇
原子能技术   119篇
自动化技术   1447篇
  2024年   39篇
  2023年   150篇
  2022年   305篇
  2021年   434篇
  2020年   337篇
  2019年   306篇
  2018年   304篇
  2017年   297篇
  2016年   302篇
  2015年   431篇
  2014年   515篇
  2013年   716篇
  2012年   665篇
  2011年   713篇
  2010年   608篇
  2009年   620篇
  2008年   556篇
  2007年   535篇
  2006年   475篇
  2005年   474篇
  2004年   308篇
  2003年   286篇
  2002年   274篇
  2001年   266篇
  2000年   226篇
  1999年   275篇
  1998年   275篇
  1997年   219篇
  1996年   185篇
  1995年   162篇
  1994年   140篇
  1993年   106篇
  1992年   93篇
  1991年   80篇
  1990年   61篇
  1989年   66篇
  1988年   58篇
  1987年   42篇
  1986年   35篇
  1985年   39篇
  1984年   29篇
  1983年   19篇
  1982年   35篇
  1981年   26篇
  1980年   18篇
  1979年   14篇
  1977年   20篇
  1976年   19篇
  1974年   19篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
1.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
2.
Bismuth doped La2-xBixNiO4+δ (x = 0, 0.02 and 0.04) oxides are investigated as SOFC cathodes. The effects of Bi doping on the phase structure, thermal expansion, electrical conduction behavior as well as electrochemical performance are studied. All the samples exist as a tetragonal Ruddlesden-Popper structure. Bi-doped LBNO-0.02 and LBNO-0.04 have good chemical and thermal compatibility with LSGM electrolyte. The average TEC over 20–900°С was 13.4 × 10?6 and 14.2 × 10?6 K?1 for LBNO-0.02 and LBNO-0.04, respectively. The electrical conductivity was decreasing with the rise of Bi doping content. EIS measurement indicates Bi doping can decrease the ASR values. At 750 °C, the obtained ASR for LBNO-0.04 is 0.18 Ωcm2, which is 56% lower than that of the sample without Bi doping, suggesting Bi doping is beneficial to the electrochemical catalytic activity of LBNO cathodes.  相似文献   
3.
4.
5.
6.
While perfluoroalkyl acids (PFAAs), also known as C8s, are used extensively in textile repellent coatings, concerns have arisen for their carcinogenicity and hazardous effects on the environment. In this study, a novel water-based, nonfluoro, and nanobrush textile repelling agent was prepared by conventional sol–gel chemistry using amorphous fumed silica and n-octyltriethoxysilane as the starting materials. Minimal interaction between the designed repelling agent and marketed water-based resins was confirmed using linear viscosity region (LVR) analysis and asymmetric-flow field-flow fractionation (AF4), suggesting the self-stratification potential of the repelling agent. More specifically, the repelling agent exhibited excellent compatibility and self-stratifying ability with a force-emulsified acrylic-based resin, affording a water contact angle of 104.3° when incorporated at 7% solid content. Performance tests carried out on thermoplastic polyurethane (TPU) revealed excellent adhesion (100/100) of a final formulation, and a significant increase in water contact angle from 80.1° to 103.8° after treatment. In addition, the fouling area after the removal of a submerged sample from a mixture of slurry, polymer, and oil decreased from 48 to 1% when the repelling agent was added. Moreover, the sludge-fouling property remained unchanged after 1000 cycles of abrasion. These findings demonstrate the potential of the described nonfluoro, nanobrush repelling agent as an environmentally safe alternative for use with commercial resins, in turn realizing a fully water-based hydrophobic coating. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48003.  相似文献   
7.
Pr0.6-x NdxCa0.4 FeO3-δ ( x = 0.0, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized using Pechini method. A number of studies were conducted concerning composition, specific area, crystalline structure and microstructure of the samples by means of FT-IR, BET, XRD TG-DTA and SEM. The results show that all the samples with different doping amounts of Pr^3+ and Nd^3+ on A-site are fine dispersed, and mean particle size less than 100 nm. The powders have good sinterability, and the relative density is 95% after sintered at 1200 ℃ for 2 h. It is found that all specimens are entirely single phase solid solutions with orthorhombic perovskite structure, the stable perovskitetype phase is formed completely after calcination at 900 ℃.  相似文献   
8.
介绍了循环伏安法的产生背景、原理。应用该技术可以快速、方便地对润滑油中抗氧剂、总酸(碱)值进行测定,并且可以对不同厂家润滑油的抗氧剂包进行区别。该技术还可以有效地评价润滑油的使用寿命和设备工作状况。  相似文献   
9.
10.
Magnetic effects of direct ion implantation of Mn and Fe into p-GaN   总被引:3,自引:0,他引:3  
In p-GaN implanted with Mn (3×1016 cm−2 at 250 keV), the material after annealing shows ferromagnetic properties below 250 K. Cross-sectional transmission electron microscopy (TEM) revealed the presence of platelet structures with hexagonal symmetry. These regions are most likely GaxMn1−xN, which produce the ferromagnetic contribution to the magnetization. In p-GaN implanted with Fe, the material after annealing showed ferromagnetic properties at temperatures that were dependent on the Fe dose, but were below 200 K in all cases. In these samples, TEM and diffraction analysis did not reveal any secondary phase formation. The results for the Fe implantation are similar to those reported for Fe doping during epitaxial growth of GaN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号